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Abstract. The standard model of dynamic oligopolistic competition
views firms as players in a repeated game, where the demand function is the
same in every period. This is not a satisfactory model of the demand side if
consumers can make intertemporal substitution between periods. Each period
then leaves some residual demand to future periods, and pricing in one period
may affect consumers’ expectations of future prices. In particular, consumers
who observe a deviation from collusive firm behavior may anticipate an ensuing
punishment phase with lower prices, and may therefore postpone purchases. In
a model that incorporates these two additional elements the interaction between
the firms no longer constitutes a repeated game. We here develop a simple
model of intertemporal demand in a market setting with overlapping cohorts
of consumers, and analyze collusive pricing under Bertrand competition. The
more patient and forward-looking consumers are and the higher is the rate of
consumer turn-over, the easier it is for firms to collude against them.
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1. Introduction

The Coase conjecture (Coase, 1972) stipulates that a monopolist selling a new durable
good cannot credibly commit to the monopoly price, because once consumers have
made their purchases at this price, the monopolist will have an incentive to reduce the
price in order to capture residual demand from consumers who value the good below
the monopoly price. This in turn, Coase claims, would be foreseen by consumers
with valuations above the monopoly price, and therefore some of these — depending
on their time preference — will postpone their purchase in anticipation of a price fall.
Coase’s argument is relevant not only for a monopoly firm in a transient market for
a new durable good, but also for oligopolistic firms in a perpetually ongoing market
for durable and non-durable goods. If such firms maintain a collusive price above
the competitive price under the threat of a price war, as the literature on repeated-
games suggests they may, then consumers might foresee price wars in the wake of
a defection, and hence not buy from a firm that slightly undercuts the others, but
instead postpone purchase to the anticipated subsequent price war. Such dynamic
aspects of the demand side runs against the spirit of the usual model of dynamic
competition viewed as a repeated-game.1 Indeed, the interaction is no longer a
repeated-game, since the market demand faced by the firms today in general depends
on history, both through consumers’ expectation formation and through their residual
demand from earlier periods. Consequently, a model with consumers who can make
intertemporal substitution between periods falls outside the domain of the standard
model of dynamic oligopolistic competition.
In this paper we develop just such a model, one that adds intertemporal economic

agents on the demand side to standard Bertrand competition on the firms’ side. We
show that, in comparison with the case of a monopoly for a new durable product, the
application of Coase’s argument to oligopoly leads to a radically different conclusion:
under a wide range of circumstances such intertemporal substitution and foresight
on behalf of the consumers facilitates, rather than undermines, monopoly pricing in
a recurrent market setting. Our conclusion is, however, in line with the findings
in Ausubel and Deneckere (1987) and Gul (1987).2 Indeed, there is a literature
on the Coase conjecture, building on models of consumers who have the possibility
of intertemporal substitution and are endowed with foresight, see for example Gul,
Sonnenschein and Wilson (1986) and the just mentioned papers. We here model
consumers very much in the same vein. However, while in those models all con-
sumers enter the market in the initial time period, in our model new consumers enter

1See e.g. Tirole (1988) for repeated-games models of dynamic oligopoly, and Fudenberg and
Tirole (1991) for various versions of the folk theorem.

2However, we also show that in some circumstances the effect may go in the same direction as in
the Coase conjecture: Collusion may be more difficult if consumers have foresight.
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the market in each market period. In this respect we follow Conlisk, Gerstner, and
Sobel (1984) and Sobel (1984, 1991). Like here, these authors assume that con-
sumers differ in their valuation of the good and want to buy the good at most once.
However, while in those models consumers who have not made a purchase remain
forever in the market, and hence residual demand builds up indefinitely over time,
our consumers spend a finite (random) time in the market — a fixed fraction of the
consumer population leaves the market each period even if they have not made any
purchase. Hence, unlike these earlier models, our model allows for the possibility
of stationary supply and demand conditions. Moreover, firms in Conlisk, Gerstner,
and Sobel (1984) and Sobel (1984, 1991) cannot resist dropping a collusive price,
that is, have sales, because the residual demand from consumers with low valuations
grows beyond any upper bound. By contrast, firms in our model can sustain the
same collusive price in equilibrium. Indeed, most of our analysis is focused on such
equilibria. However, we also show that under certain circumstances equilibrium sales
are possible also in our model, that is, with a constant consumer population.
More precisely, the market is open over an infinite sequence of market periods.

In each period every firm commits to a price in that period. There is a continuum
of consumers, and we model this population as consisting of overlapping cohorts,
where a new cohort of consumers “are born” (enter) in each period and an equally
large set of “old” consumers — that is, who were present in the preceding period
— “die” (leave). The birth and death of consumers are assumed to be driven by
exogenous factors. The size of the consumer population is thus constant. The
population share of newborn consumers in any period is some fixed fraction. This
is also the population share of the previous period’s consumer population who died.
All consumers have the same probability of dying each period. The life time of
every consumer is thus a geometrically distributed random variable with constant
hazard rate and finite expectation. The demographic composition of the consumer
population is, by contrast, deterministic and stationary. Our model contains the
standard repeated-game model as the special case when the whole population is
turned over every period.
The good in question is sold in indivisible units, and each consumer wants to

buy one unit of the good at most once during his or her lifetime. While having
identical life-table distributions, consumers differ as to their valuation of the good.
In each period, the newly arrived consumers’ valuations are distributed according to
some fixed cumulative distribution function, while the remaining old consumers are
divided into two groups: those who already bought a unit, and those who did not
yet do so. The valuation distribution in the latter group depends on the history of
prices and price expectations.
Following the above-mentioned analyses, we treat firms as players in the game-
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theoretic sense but model consumers as price-taking and expectation-forming eco-
nomic agents with no strategic power. Their aggregate demand constitutes a state
variable in a stochastic game played by the firms. The bulk of our analysis is fo-
cused on the case of consumers with perfect foresight. However, this paper is not
a plea that analysts should always assume all economic agents to have perfect fore-
sight. We believe that consumers and firms may more realistically be modelled as
having less than perfect foresight, and we indeed show how our model applies to con-
sumers with behaviorally more plausible expectations. Our position is rather that
the contrast in repeated-games models of dynamic oligopolistic competition between,
on the one hand, the intertemporal substitution possibilities, sophistication and ex-
pectations coordination ascribed to firms, and, on the other hand, the complete lack
of intertemporal substitution ascribed to consumers, should be replaced by a milder
contrast. Even taking a small step in this direction requires the analyst to go outside
the familiar class of repeated-games to the wider and less familiar class of stochastic
games. We here outline how such a generalization can be made, and provide some
of its most direct implications. We also believe that our model of demand can be a
useful work-horse for other dynamic market analyses.
The paper delivers one key trade-off and a few main results, all of which are

absent in the standard infinitely repeated Bertrand model. The trade-off has to
do with forward-looking consumers’ reaction to a (deviant) firm’s price-cut. When
consumers are forward-looking, a price-cut does not necessarily induce consumers
to buy since they might choose to wait for an even lower price in the future; this
reduces the attractiveness to firms of deviating from a collusive price. On the other
hand, since consumers are long-lived, there are consumers from previous periods
who had chosen not to buy at the going high price. Consequently, a price-cut can
reel in such consumers; this increases the attractiveness of deviating. The relative
size of these two countervailing forces determines whether the payoff to deviation is
smaller or larger than in the standard repeated-games model. When consumers are
sufficiently patient, the stronger force turns out to be the collusive one. Consumers
defer purchases after the first price-cut and wait for the price war to ensue, thus
lowering the deviation payoff to undercutting below that in the repeated-games model.
By contrast, when consumers are impatient, the fact that there is residual demand
from old customers, who add their demand to that of the new high-value ones, implies
that deviation payoffs are higher – and collusion is thus harder to sustain – than
in the standard repeated-game model.
There is one other interesting consequence of having long-lived consumers. In

the standard model, if a firm were to undercut a collusive price, then it would do
so by undercutting ever so marginally. The reason for that is that any price below
the going price would guarantee the whole market for the deviant, and the industry
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revenue is increasing in prices below the going price (assuming that the collusive price
does not exceed the monopoly price and that the industry revenue function is single-
peaked). In the current model, by contrast, the most profitable under-cutting price
may be substantially lower than the collusive price. Such significant under-cutting
can be profitable because it attracts old consumers with low valuations. Only a
significant price cut can bring in old consumers, since those amongst them who have
not yet bought have valuations below the going price.3 Since they represent a positive
fraction of the potential buyers, a deviant firm, when the collusive price is at or near
the monopoly price, will find it optimal to capture their demand.
Moreover, since the market price in the first period after a unilateral price cut,

if anticipated by consumers, will affect their demand in the defection period, the
“punishment” of a unilateral price cut not only affects the defector’s future profits
but also its profit in the defection period itself. Because of this effect, absent in
repeated games, even harsher punishments than grim trigger strategies are possible
if the marginal cost is positive, namely, to force the defector to price below marginal
cost in the post-deviation period, thus bringing down the profit in the defection
period below what it would have been under grim trigger strategies. We identify
and analyze a class of such “generalized trigger” strategies, and focus on maximally
“harsh” punishments of this sort. Any constant collusive price that can be supported
in subgame perfect equilibrium can also be supported by subgame perfect equilibria
in such strategies, so this approach allows us to explore the full range of stationary
subgame perfect equilibrium outcomes.
The above discussion suggests that it may be profitable for the firms to now

and then run a coordinated sale, in equilibrium, and thereby increase their profits
above monopoly profits.4 By assumption, such sales are anticipated by consumers
with perfect foresight and will hence reduce profits in the periods just preceding
the sale, but this may be compensated by the profits made during the sale, because
of the accumulated residual demand among old low value consumers. During the
sale, consumers correctly anticipate reversion to “normal” pricing next period, and
hence have no reason to postpone their purchases. This contrasts sharply with the
unanticipated price deviations mentioned above, where the demand facing the under-
cutting firm is dampened by consumers’ anticipation of an ensuing price war. Such
equilibrium sales can be viewed as a form of temporary price discrimination. We
provide conditions under which equilibrium sales are profitable/unprofitable.

3Recall that the only old consumers still in the market are those with valuations below or at the
going price. At a slightly lower price these consumers have virtually no surplus from buying today
but a positive surplus from buying next period (at a low price). So they wait.

4Note that the discussion in the previous paragraph referred to an off-equilibrium path
phenomenon.
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There are of course other models of dynamic Bertrand competition that depart
from the repeated-games paradigm. Kirman and Sobel (1974) consider the role of
inventories, and Maskin and Tirole (1988) and Wallner (1999) consider the role of
alternating moves. Selten (1965a,b) and Radner (1999) introduce consumers who
switch suppliers according to observed prices, though not immediately or fully. All
these strands of the literature model a dynamic oligopolistic market as a dynamic or
stochastic game, though differently from what we do here.
The paper is organized as follows: the model is developed in section 2, and the

first steps of the analysis are made in section 3. Our main results concern stationary
subgame perfect equilibria are given in section 4. Section 5 analyses equilibrium
sales, section 6 briefly discusses consumers with adaptive expectations, and section 7
concludes.

2. The model

Suppose there are n firms in a market for a homogenous indivisible good. The market
operates over an infinite sequence of periods, t = 0, 1, 2, .... All firms simultaneously
set their prices at the beginning of every period and are committed to that price
during the period. Let pit ≥ 0 be firm i0s price in period t. All consumers observe
all posted prices, and buy from the firms with the lowest price. The lowest price in
any period will be called the market price in that period,

pt = min{p1t, ..., pnt}. (1)

If more than one firm asks the market price, then sales are split equally between
these. The firms face no capacity constraint and produce the good at a constant
marginal cost c ≥ 0. Hence, each firm’s profit in a market period is simply its sales
multiplied by the difference between its price and marginal cost. All firms are risk
neutral and discount future profits by the same discount factor δ ∈ (0, 1) between
successive market periods. Resale is not possible.
There is a continuum population of consumers, divided into overlapping cohorts.

A cohort of new consumers arrive (are “born”) each period, and an equally large
set of old consumers, that is, consumers who were in the market in the preceding
period, exit (“die”). The size of the consumer population is thus constant, and we
normalize it to 1. The population share of new consumers in any period is α ∈ (0, 1],
and this is also the share of the previous period’s population that exits/dies each
period. All consumers have the same probability α of exiting/dying each period.
We will call α the consumer turn-over rate. It follows that the “life span” S of
every individual is a geometrically distributed random variable, with probability α
for S = 1, probability (1− α)α for S = 2, probability (1− α)2 α for S = 3 etc. The
demographic composition of the consumer population, however, is deterministic and
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stationary: in all periods the share of newly arrived consumers is α, the share of
one period olds is (1 − α)α, and, more generally, of s periods olds is (1 − α)sα, for
s = 0, 1, 2, ..... We will call the newly arrived young and all others old.
Each consumer wishes to buy at most one unit of the good during his or her

lifetime. Consumers differ as to their valuation v of the good. In each period, young
consumers’ valuations v are distributed according to a fixed cumulative distribution
function F : R+ → [0, 1]. We assume F to be continuous and to be strictly increasing
wherever F (p) < 1. Let D : R+ → [0, 1] be defined by D (p) = 1 − F (p). The
function D corresponds to the demand function in a static setting. Let the function
Π : R+ → R be defined by Π (p) = (p− c)D (p). We will refer to this as the industry
profit function and assume it to be single-peaked with maximum at some positive
price, the monopoly price, pm = argmaxp≥0Π (p).
All consumers have the same pure time preference, represented by the discount

factor γ ∈ [0, 1]: the discounted expected utility from purchase of a unit τ ≥ 0
periods later at price p ≥ 0 is (v − p) γτ , while the utility of never acquiring the good
is normalized to zero.5 In view of the probability α of exiting the market or dying,
the effective discount factor for purchasing decisions, is β = (1− α) γ.6

2.1. Consumer expectations and choices. Consumers have perfect foresight
concerning future prices. In any given period, let p denote the current market price,
and let pe(τ) be the expected market price τ periods ahead, for τ = 0, 1, 2, ... (hence
pe(0) = p). For a consumer with valuation v, who has not yet bought a unit, it is
optimal to buy in the present period if and only if her utility from doing so is neither
exceeded by the utility from never buying the good nor by the expected utility from
postponing purchase to some future period, that is, iff

v − p ≥ max
©
0, β [v − pe(1)] , β2 [v − pe(2)] , ...

ª
. (2)

Of particular relevance for the subsequent analysis are scenarios when the price
is expected to remain constant in the near future, then drop to a lower price and
thereafter not fall any lower. Formally: let σ be a positive integer and suppose
pe(τ) = p for τ = 0, 1, 2, ...σ − 1, pe(σ) = pe < p and pe(τ) ≥ pe for all τ > σ. The
special case σ = 1 is thus the scenario when “tomorrow’s” price is expected to be

5An interesting extension is to allow for consumer heterogeneity also with respect to time
preferences.

6This parametrization in effect assumes that consumers literally “die” when exiting the popula-
tion. An alternative scenario, calling for slightly different parametrization, is when exiting consumers
migrate to another economy, with other purchasing opportunities – hence, where unspent money
has a positive value.
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lower than “today’s,” and σ = 2 the scenario when the price is expected to fall the
“day after tomorrow” etc.
Consider such a price scenario, and a consumer with valuation v who has not yet

bought the good. Her utility from buying in a “pre-sale” period τ < σ is βτ (v − p),
from buying in the “sales period” σ is βσ (v − pe), and from buying in a “post-sale”
period τ > σ is less than or equal to βσ+1 (v − pe). Hence, it is never optimal to plan
to buy in a post-sale period, nor in a pre-sale period other than the current period
(τ = 0). The remaining choices are: buy in the current period, in the sales period,
or not at all. It is easily verified that the first choice is optimal if and only if the
consumer’s valuation v is at least

vσ (p, pe) =
p− βσpe

1− βσ
. (3)

We will call vσ (p, pe) the cut-off valuation level.7 Among the young and those old
who have not yet bought a unit, all consumers with valuations v > vσ (p, pe) will thus
buy in the current period, while those with valuations v < vσ (p, pe) will not buy –
they will either wait for the expected price cut or abstain from buying.8

In any market period, and under any price expectation scenario p, pe (1) , pe (2) , ...,
consider a cohort of consumers who entered s periods ago. From equation (2) it is
clear that it is always the upper tail of the cohort’s value distribution that buys.
Hence, s periods back, when the cohort was “young,” everybody above some cut-off
valuation purchased the good. In the next period, that is, s− 1 periods back, some
more consumers from the same cohort may have purchased the good at a lower price,
and some consumers have “died.” The additional buyers belong to the upper tail
among the non-buyers from s periods back, and so on. By the time this cohort
reaches the current period, it has shrunk in size by the factor 1 − α each period,
and there is a highest valuation vs among the remaining individuals such that all
consumers in the cohort with valuation above vs have already purchased the good,
while none of those with lower valuations have done so.9 In sum: the size of the
cohort that entered s periods ago is α (1− α)s, and the valuation distribution in that
cohort is given by the c.d.f. Fs (x) = F (x) /F (vs) for x ∈ [0, vs].

7To see that this decision rule is optimal, note that the utility from current purchase is v − p,
from purchase in the sales period βσ (v − pe), and from no purchase it is 0. Thus, if v > vσ (p, pe),
the first utility exceeds the second, and, since pe ≤ p, it also exceeds the third (zero). If instead
v < vσ (p, pe), then the second utility exceeds the first.

8For the sake of definiteness, but without affecting the results (since the valuation distribution
is assumed continuous), we assume that consumers who are indifferent between buying now and in
the future or not at all, will buy now.

9Note also that vs ≤ vs−1 for all s; an older cohort cannot have a higher current cut-off valuation
than a younger cohort.
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It follows that the value distribution among the old consumers in any period t who
have not yet made a purchase is completely described by the vector vt = (v1, v2, .., vt)
of all old cohorts’ highest valuations. This vector determines, in its turn, current
aggregate demand from old consumers, as a function of the current market price and
current consumer expectations about future prices. Current demand from young
consumers, who make up the population share α, is derived from the original value
distribution F .

2.2. Equilibrium. We assume that firms know all past prices announced in all
earlier periods, as well as the current aggregate demand function.10 This information
defines the state in the stochastic game played by the n firms. A (pure behavior)
strategy for a firm is accordingly a function that specifies a price to set in each
period τ , conditional upon the state in that period. Firms’ strategies constitute
a subgame perfect equilibrium if in all periods and states each firm maximizes its
expected discounted future stream of profits, given all other firms’ strategies. We
note that, since the stage game in a period in general depends on the current state,
which in general depends on the price history, the strategic interaction between the
firms is not a repeated but a stochastic game.11

3. Preliminaries

Before analyzing the model in full generality, we here pin-point aggregate demand in
steady state and examine a special case of the present model that coincides with the
usual repeated-games model of dynamic Bertrand competition.

3.1. Aggregate demand. Suppose that in all past periods the market price was
p∗ and that this price was expected to remain in all future periods.12 What would
current aggregate demand then be if consumers (a) experienced a sudden price cut,
p < p∗, (b) expected some price pe ≤ p in the next period and (c) expected no future
price below pe?
Current demand from new consumers would then simply be their population share,

α, times the share of new consumers with valuations exceeding their current cut-off

10In fact, it is sufficient that firms hold correct expectations along the induced price path and
after unilateral deviations from this path.
11For a discussion of stochastic - sometimes called Markovian - games, see Fudenberg and Tirole

(1991), chapter 12, and see Dutta (1995) for equilibrium characterizations in such games.
12More exactly, we here focus on collusion in a market environment where initial conditions have

played out their role. We effectively assume an infinite past, or, equivalently, an initial state that is
consistent with an infinite past.
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valuation, defined in equation (3):

Dy (p, pe) = αD

µ
p− βpe

1− β

¶
. (4)

By contrast, current demand from the old would also depend on their past cut-off
valuations. When all firms’ prices in the past were p∗ and were expected to remain
at that level, all old consumers with valuations above p∗ have already bought a unit,
while those with lower valuations have abstained from buying. Hence, we would have
vs = p∗ for all cohorts s ≥ 1. Current demand from the old, whose population share
is 1− α, would thus be

Do (p∗, p, pe) = (1− α)max

½
0, D

µ
p− βpe

1− β

¶
−D (p∗)

¾
. (5)

In sum, current aggregate demand would be

A (p∗, p, pe) = αD

µ
p− βpe

1− β

¶
+ (1− α)max

½
0,D

µ
p− βpe

1− β

¶
−D (p∗)

¾
. (6)

This shows that, for sufficiently low under-cutting prices p, aggregate demand
emanates from both the old and young, while for higher under-cutting prices p it
emanates only from the young – old consumers with high valuations have already
bought a unit. The intermediate under-cutting price that separates these two cases
is a convex combination of current and past expected prices: p̄ = βpe + (1− β) p∗.
The more patient consumers are, the more weight is given to the currently expected
price for the next period.

3.2. The repeated-games model. The standard model of dynamic oligopoly
corresponds to the special case when a new batch of consumers enter each period,
that is, when α = 1 and hence β = 0. Then equation (6) gives

A (p∗, p, pe) = D (p) , (7)

for all p∗, p and pe. The oligopoly thus faces the same demand function each period.
We will refer to this special case as the standard repeated-games model.
Trigger strategies supporting a constant collusive price p∗ exceeding marginal

cost can then be defined in the usual way: all firms ask the price p∗ in the initial
period and continue to do so in all future periods as long as no firm undercuts this
price. Otherwise, all firms set the price c, their marginal production cost, from that
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period on.13 Suppose that consumers observe all past and current prices and have
perfect foresight concerning future prices (at least on the price path induced by the
firms’ strategy profile and after any unilateral deviation from this path). Given any
current market price p and the price history where all firms asked the price p∗ in all
past periods, we then have

pe (τ) =

½
p∗, if p = p∗,
c, if p 6= p∗,

(8)

for all τ > 0. Such expectations fall into the class of price scenarios discussed in
section 2. Hence, cut-off valuations satisfy equation (3) with σ = 1.
A trigger-strategy profile, in which all firms quote the same collusive price p∗ in

all periods until a price deviation is detected, from which time on they all quote the
price c, constitutes a subgame perfect equilibrium in this special case if and only if

Π(p) ≤ Π(p∗)

n (1− δ)
(9)

for all p < p∗, where Π is the industry profit function, defined in section 2. The
quantity on the left-hand side of (9) is the present value of the profit to a firm that
undercuts the collusive price by posting a price p < p∗ – such a firm will earn zero
profit in all future periods – and the quantity on the right-hand side is the present
value of the firm’s profit were it to remain at the collusive price p∗. By continuity of
the value distribution, inequality (9) holds if and only if

max
p∈[0,p∗]

Π(p) ≤ Π(p∗)

n (1− δ)
. (10)

Since the industry profit function Π by hypothesis is single-peaked, the left-hand side
in equation (10) is simply Π(p∗) if the collusive price p∗ does not exceed the monopoly
price – a deviating firm then wants to undercut the going price only slightly. Hence,
a collusive price p∗ ∈ (c, pm] is supported by a subgame perfect equilibrium in grim
trigger strategies if and only if

δ ≥ 1− 1/n. (11)

4. Constant-price collusion

Having considered constant collusive pricing in the special case when α = 1 and β = 0,
we now turn to situations when 0 < α < 1 and 0 < β < 1. The interaction is no

13In order to make this a complete and subgame perfect strategy specification, assume all firms
set the price c also in case current aggregate demand is inconsistent with p∗ having been the going
price and price expectation in all preceding periods.
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longer a repeated game, and an additional consideration comes into play: the market
price in the first period after a deviation from a collusive price, if anticipated by
consumers, will affect their demand in the defection period. Hence, the “punishment”
that follows upon a unilateral price cut not only affects the continuation payoffs to
the defector but also the defector’s payoff in the defection period itself. Because of
this effect, absent in repeated games, even harsher punishments than grim trigger
strategies are possible if the marginal cost is positive, namely, to force the defector to
price below marginal cost in the post-deviation period, thus bringing down the profit
in the deviation period below what it would have been under grim trigger strategies.
In subsection 4.1 we identify a class of such “generalized trigger” strategies, with

focus on those with maximally “harsh” punishments, and provide conditions for sub-
game perfect equilibrium in this type of strategy. Since constant collusive prices
that are supported by some subgame perfect strategy profile can be supported by
subgame perfect equilibria in such strategies, we thereby explore the full range of
stationary subgame perfect equilibrium outcomes, a point to which we substantiate
in subsection 4.5. Before that, however, we analyze collusion possibilities in gen-
eralized trigger strategies in section 4.2, including limiting results and comparisons
with the repeated-games case α = 1 and β = 0. Moreover, in section 4.3 we pro-
vide results on the optimal deviation price in the special case of zero marginal cost
and monopoly-price collusion, and illustrate the results in section 4.4 by means of a
parametric example.

4.1. Generalized trigger-strategy equilibria. Suppose, first, that c = 0, and
define “grim trigger” strategies just as in the repeated-games case discussed above.
Such a strategy profile is a subgame perfect equilibrium if and only if

(p− c)A (p∗, p, 0) ≤ αΠ(p∗)

n (1− δ)
∀p < p∗, (12)

where c = 0. The quantity on the left-hand side is the present value of the profit to
a firm that undercuts the collusive price by posting a price p < p∗ (such a firm will
earn zero profit in all later periods), and the quantity on the right-hand side is the
present value of the firm’s profit were it to remain at the collusive price p∗ – the
factor α accounts for the fact that only the young buy in steady state.
Secondly, suppose that c > 0. In such cases, harsher punishments than “grim

trigger” strategies are in fact possible. The most severe “punishment” of a defector,
is to drop the market price as much as possible in the first punishment period, that is
below marginal cost all the way down to zero, and to keep the expected continuation
profit, as evaluated after a defection, as close as possible to zero. In order to obtain
subgame perfection, such severe punishment should be “incentive compatible:” for
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the defector to “obey” and for the other firms to implement. We here focus on such
strategies, a class of generalized trigger strategies, where the defector prices at zero
in the first punishment period, while all other firms price at marginal cost in that
period. The defecting firm thus receives all demand in the defection period, and
hence makes a loss. In the next period, all firms return to the collusive price p∗

for good with probability q, but with probability 1− q the punishment price profile
– zero for the defector and marginal cost for the others – is repeated, and so on.
The number of punishment periods is thus random. If the defector does not obey
the punishment pricing in a punishment period, the others restart the punishment
sequence. Other firms have no incentive to deviate from punishing a deviator since
they earn zero profit in each punishment period and cannot make a positive profit
since at least one other firm prices at or below marginal cost.14 We assume that the
randomization that determines the duration of punishment is public – a heroic but
common assumption in the repeated games literature.15

More precisely, generalized trigger strategies are defined as follows. Initially, all
firms ask the same price p∗ > c > 0 and they continue to do so as long as no firm
posts a lower price. Suppose a firm i in some period t posts a price p < p∗. In
the next period, this firm prices at zero while all other firms price at marginal cost:
pt+1,i = 0 < c = pt+1,j for all j 6= i. This is not a Nash equilibrium in the stage
game of that period, however, so incentives have to be created for firms to play
along. Let ϕ : (0, p∗) → [0, 1], and set q = ϕ (p). With probability q, all firms
return to the collusive price p∗ in period t + 2, while with probability 1 − q, they
keep their prices from period t + 1. In the latter case, the same randomization is
independently repeated in period t + 3, etc., resulting in a geometric distribution
of punishment periods (beyond the first). The random number T of punishment
periods thus satisfies Pr (T ≥ 1) = 1 and

Pr (T = k + 1 | T ≥ k) = q

for positive integers k, where q = ϕ (p). A generalized trigger strategy is thus fully
characterized by the randomization function ϕ.
A generalized trigger strategy profile ϕ is a subgame perfect equilibrium if and

14In order to make this a complete strategy specification, assume all firms set the price c also in
case current aggregate demand is inconsistent with p∗ having been the going and expected price in
all preceding periods.
15An alternative to randomized duration of punishment is to have deterministic non-decreasing

pricing schemes during a finite and deterministic number of periods. However, because time is
discrete, such strategy profiles lack a certain continuity property that randomized durations have
and that allows for certain analytical results.
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only if the following two conditions hold for all p < p∗ and for q = ϕ (p):

(p− c)A (p∗, p, 0)− δcB (p∗, p, 0)+

+δ2
+∞X
k=1

q (1− q)k−1
∙µ
1− δk−1

1− δ
αΠ (0) +

δk−1

1− δ

α

n
Π(p∗)

¶¸
≤ αΠ(p∗)

n (1− δ)
(13)

and

−cB (p∗, p, 0) + δ
+∞X
k=1

q (1− q)k−1
∙µ
1− δk−1

1− δ
αΠ (0) +

δk−1

1− δ

α

n
Π(p∗)

¶¸
≥ 0. (14)

The first term in (13) is the defector’s profit in the defection period. Consumers
then see the defector’s current price p and expect the market price zero in the next
period. The second term is the defector’s discounted profit from sales in the first
punishment period, where B (p∗, p, 0) denotes aggregate demand in this period. The
sum on the second line represents the defector’s discounted profits during punishment
periods 2 and beyond. Only the young buy in these periods, and they make up the
population share α. The factor q (1− q)k−1 is the probability that the number T
of punishment periods is k. The associated factor in square brackets is the sum of
discounted profits when T = k; k−1 initial punishment periods of selling to all young
at price zero, followed by all firms returning to collusive pricing. The expression on
the right-hand side of (13) is the discounted sum of profits that the defecting firm
would have earned, had it not defected. Likewise, the first term on the left-hand side
of (14) represents the profit to the defecting firm during the first punishment period,
and the sum the discounted profits thereafter, evaluated from the first punishment
period. The left hand side is thus the present net value to the defecting firm, after its
defection, of obeying the punishment. Condition (14) requires this present value to
be non-negative; otherwise the defecting firm would do better by pricing at marginal
cost forever. A generalized trigger strategy profile that meets condition (14) with
equality for all deviation prices p ∈ (c, p∗) will be called tight.

Proposition 1. Suppose that δ ∈ (0, 1), n ∈ N, c > 0 and p∗ ∈ (c, pm]. Condi-
tion (12) is necessary for p∗ to be supported by subgame perfect generalized trigger
strategies. This condition is also sufficient for tight generalized trigger strategies sup-
porting p∗ to be subgame perfect. Condition (15) below is sufficient for the existence
of tight generalized trigger strategies.

c < δ
αΠ(p∗)

n (1− δ)
(15)
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Proof: Let δ ∈ (0, 1), n ∈ N, c > 0, p∗ ∈ (c, pm] and consider a generalized
trigger strategy with randomization function ϕ, such that p∗ is the price on the path
of the profile. Then conditions (13) and (14) hold for all p ∈ (c, p∗) when q = ϕ (p).
Insertion of (14) into (13) gives (12), proving the first claim. For the second claim,
consider a tight generalized trigger strategy with randomization function ϕ. Then
(14) holds with equality for all p ∈ (c, p∗). Inserting this equality into condition (13)
shows that the latter holds for all p < p∗ if and only if condition (12) holds. For
the third claim, note, for any given deviation price p, the left-hand side of (14) is an
increasing and continuous function f of q ∈ [0, 1], with f (0) = −cB (p∗, p, 0) and

f (1) = −cB (p∗, p, 0) + δ
αΠ(p∗)

n (1− δ)
.

By the intermediate value theorem, f (0) < 0 < f (1) is sufficient for the existence
of a termination probability q ∈ (0, 1) such that (14) holds with equality for that
deviation price p. It remains to examine B (p∗, p, 0). This is aggregate demand in
the first punishment period, emanating from the young in that period, plus the young
in the defection period who did not buy then and survived one period, plus the old
in the defection period who did not buy and who survived one more period:

B (p∗, p, 0) = αD (0) + (1− α)αF

µ
p

1− β

¶
+

+(1− α)2
∙
F (p∗)−max

½
0, D

µ
p

1− β

¶
−D (p∗)

¾¸
= αD (0) + (1− α)α

∙
1−D

µ
p

1− β

¶¸
+

+(1− α)2
∙
1−max

½
D (p∗) ,D

µ
p

1− β

¶¾¸
Thus B (p∗, p, 0) > 0 and hence f (0) < 0, and this holds for all p. Moreover,
F (0) ≥ 0 and hence

B (p∗, p, 0) ≤ α+ (1− α)α+ (1− α)2 = 1,

again for all p. Thus, condition (15) is sufficient for the existence of a tight generalized
trigger strategy profile supporting p∗. In force of claim two, this establishes claim
three in the proposition. End of proof.

Note that the sufficient condition (15) for the existence of tight generalized trigger
strategies is met when c = 0, and for all sufficiently large discount factors δ < 1 when
c > 0. The subsequent analysis is predicated upon condition (15), and is focussed
on tight generalized trigger strategies.



DYNAMIC BERTRAND COMPETITION WITH INTERTEMPORAL DEMAND 16

4.2. Collusion possibilities: Limit results and comparison with the repeated-
games model. Using (6) and dividing through by α > 0, the subgame perfection
condition (12) can be re-written as

(p− c)

∙
D

µ
p

1− β

¶
+
1− α

α
max

½
0,D

µ
p

1− β

¶
−D (p∗)

¾¸
≤ Π(p∗)

n (1− δ)
∀p < p∗.

(16)
This condition immediately implies a “Folk Theorem”- like result:

Proposition 2. For each collusive price p∗ ∈ (c, pm] there exists a discount factor
δ̄ (p∗) < 1 such that p∗ is sustainable in subgame perfect equilibrium for all δ ∈¡
δ̄ (p∗) , 1

¢
.

In other words: just as in the standard repeated-games approach, collusive prices
are sustainable provided firms are sufficiently patient. Note, however, that unlike in
that special case, the critical discount factor in general depends on the collusive price
p∗.
We turn to a comparison of the deviation profit in this model with that in the

standard repeated-game model, for any given discount factor δ high enough to meet
condition (15). The left-hand side of (16) is the present value of the stream of
net profits per young consumer to a firm that undercuts the going collusive price by
setting p < p∗ (recall that the young make up the population share α). By continuity
of the left-hand side of (16) with respect to p, that inequality holds for all p < p∗ if
and only if

π̂ (p∗, α, β) ≤ Π(p∗)

n (1− δ)
, (17)

where π̂ (p∗, α, β) is the maximal deviation profit (per young consumer):

π̂ (p∗, α, β) = max
p∈[0,p∗]

(p− c)

∙
D

µ
p

1− β

¶
+
1− α

α
max

½
0,D

µ
p

1− β

¶
−D (p∗)

¾¸
.

(18)
The right-hand side in the equilibrium condition (17) is identical to that in the

standard repeated-games case (inequality (10)). Moreover, if α = 1 and β = 0, as in
the standard repeated-games case, then π̂ (p∗, α, β) = Π (p∗). Hence, condition (17)
then coincides with the repeated-games equilibrium condition (11).
It is easily verified that the generalized deviation profit π̂ (p∗, α, β) is continuous,

non-decreasing in p∗, and non-increasing in each of α and β. Hence, collusion is easier
the higher the consumer turn-over rate α and their effective discount factor β are,
while the effect of a change of a collusive price p∗ < pm is left ambiguous, since both
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sides of the inequality (17) are non-decreasing in p∗. However, when p∗ = pm, then
the right-hand side is maximal, and thus we may conclude that a marginal reduction
in the collusive price, from monopoly pricing, does not facilitate collusion. More
exactly:

Proposition 3. The deviation profit π̂ (p∗, α, β) is continuous in all three arguments.
For p∗ ≤ pm, it is non-decreasing in p∗ and non-increasing in each of α and β, with
π̂ (p∗, 1, 0) = Π(p∗). For each p∗ ∈ (c, pm] and α ∈ (0, 1) there exists a β̄ ∈ (0, 1)
such that

π̂ (p∗, α, β) ≥ Π(p∗) ⇔ β ≤ β̄.

Proof: The continuity claim follows from the continuity of D = 1−F , by Berge’s
Maximum Theorem. The equation π̂ (p∗, 1, 0) = Π(p∗) = maxp∈[0,p∗]Π(p) follows
from the monotonicity of D. Moreover, π̂ (p∗, α, β) is non-decreasing in p∗ since
the interval [0, p∗], from which the maximand is chosen, is increasing in p∗, and the
maximand is point-wise non-decreasing in p∗. Likewise, π̂ (p∗, α, β) is non-increasing
in α since the maximand is point-wise non-increasing in α, and likewise for β, see
equation (18). Finally, let p∗ > c and α ∈ (0, 1). Then π̂ (p∗, α, β) is continuous and
non-increasing in β, with

π̂ (p∗, α, 0) = max
p∈[0,p∗]

(p− c)

∙
D (p) +

1− α

α
[D (p)−D (p∗)]

¸
≥ max

p∈[0,p∗]
Π (p) ,

where the inequality follows from the monotonicity of D. End of proof.

Recall that β = (1− α) γ, where γ is the consumers’ pure temporal discount
factor, and, for now, keep the consumer turn-over rate α ∈ (0, 1) fixed. It follows
from the proposition that the deviation profit is (weakly) lower the more patient the
consumers are – the higher γ is. The intuition for this is clear. Suppose a firm
undercuts the collusive price. The more patient the consumers are, ceteris paribus,
the more of them will postpone their purchase until next period’s anticipated “price
war.” If consumers are sufficiently patient, that is, if γ > γ̄ = β̄/ (1− α), then the
maximal deviation profit is lower than or equal to that in the repeated-games case:
collusion is then easier to sustain than in the repeated-games model. By contrast,
if consumers are sufficiently impatient, γ ≤ γ̄, then the maximal deviation profit
(weakly) exceeds that in the corresponding repeated-games case: collusion is then
harder to sustain than in the repeated-games model.16 We illustrate this graphically
in an example below.

16Note that we have not excluded the possibility that γ̄ ≥ 1. The analysis under the constraint
γ̄ ≤ 1 is more cumbersome but does not give much in terms of additional insight.
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4.3. Zero marginal cost and monopoly pricing. We here focus on the special
case of zero marginal cost, c = 0, and collusive monopoly pricing. Unlike in the
standard repeated-games case, the optimal deviation is then a sizeable price cut. To
see this, first note that

π̂ (pm, α, β) = max {π̂1 (pm, α, β) , π̂2 (pm, α, β)} , (19)

where π̂1 is the optimal deviation profit over the price range, p ≤ p̄ = (1− β) pm,
in which both old and young bite, and π̂2 is the supremum deviation profit over the
(open) price range, p̄ < p < pm, in which only young consumers bite.

Proposition 4. π̂1 (p
m, α, β) ≥ π̂2 (p

m, α, β) for all α, β ∈ (0, 1).

Proof: By way of change of variables (let r = p/ (1− β)):

π̂1 (p
m, α, β) = max

p≤p̄

p

α

∙
D

µ
p

1− β

¶
− (1− α)D (pm)

¸
=

1− β

α
max
r≤pm

r [D (r)− (1− α)D (pm)] ≥ (1− β)Π (pm)

and

π̂2 (p
m, α, β) = max

p̄≤p≤pm
pD

µ
p

1− β

¶
= (1− β)max

r≥pm
rD (r) = (1− β)Π (pm) .

End of proof.

In other words, it always pays off to make a price all the way down to(1− β) pm or
further, where both old and young bite. Moreover, ifD is continuously differentiable,
then the optimal undercutting price, p̂, necessarily satisfies the following first-order
condition:

Π0
µ

p̂

1− β

¶
= (1− α)D (pm) .

In the limit as α → 1 and β → 0, we obtain p̂ → pm, just as in the standard
repeated-games case.
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4.4. Example. For the sake of illustration, suppose that consumer valuations are
uniformly distributed on the unit interval: D(p) = max {0, 1− p}. Then Π(p) =
max {0, p(1− p)}, pm = 1/2, and we obtain

p̂ =
1

4
(1 + α) (1− β) . (20)

Hence, the optimal deviation price increases with the consumer turn-over rate α and
decreases with consumers’ effective patience β. The optimal deviation profit per
young consumer becomes

π̂1 =
1− β

α

µ
1 + α

4

¶2
, (21)

a decreasing function both of α and of β. Using β = (1− α) γ, this combines to

p̂ =
(1 + α) [1− (1− α) γ]

4
, (22)

and

π̂1 =
1− (1− α) γ

α

µ
1 + α

4

¶2
. (23)

The diagram below shows isoquants for the optimal deviation price, p̂, as a func-
tion of α (horizontal axis) and γ (vertical axis).
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0
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Figure 1: Contour map for the optimal undercutting price, as a function of α and γ.
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The thick, curve is the isoquant where p̂ is just below pm, that is, where the
optimal deviation price is close to the marginal under-cutting that is familiar from
the repeated-games model of price competition. From the left, the curves are the
isoquants for p̂ = 0.1, 0.2, 0.3, 0.4 and 0.495, respectively (recall that pm = 0.5). The
optimal deviation price is hence far below the going monopoly price when consumers
are patient and their turn-over rate is small, a combination that arises when market
periods are short. In other words, the optimal under-cutting is significant when firms
cannot commit to their prices for long periods – in stark contrast with the usual
repeated-games model of price competition.
The next diagram shows isoquants for the maximal deviation profit, π̂1, as a

function of α (horizontal axis) and γ (vertical axis). The thick, kinked curve is the
isoquant for π̂1 = Π (pm), that is, where the maximal deviation profit is the same as
in the repeated-games model. Parameter pairs (α, γ) above (below) this curve result
in lower (higher) deviation profits. Hence, collusion is easier (harder) in the present
model than in the repeated-games model for parameter pairs above the curve.

10.750.50.250
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0.75

0.5

0.25

0

alpha

gamma

alpha

gamma

Figure 2: Contour map for the maximal deviation profit, as a function of α and γ.

We also note that the two iterated limits of the maximal deviation profit per
young consumer, π̂1,when α→ 0 and γ → 1, differ:

lim
α→0

lim
γ→1

π̂1 =
1

16
< Π (pm) =

1

4
< lim

γ→1
lim
α→0

π̂1 = +∞.

However, the iterated limits of the maximal deviation profit in absolute terms, απ̂1,
do agree: both equal Π (pm) = 1/4.
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To obtain a determined limit of the maximal deviation profit per young consumer,
suppose the length of the market period is taken down from one to zero. With a
market-period of length∆ ∈ (0, 1), we would then have α = ∆·a and γ = exp (−b ·∆)
for some a, b > 0. Taking this continuous-time limit, we obtain

lim
∆→0

π̂1 = lim
∆→0

1− (1− a∆) e−b∆

a∆

µ
1 + a∆

4

¶2
=

a+ b

16a
.

Hence, in the limit, collusive monopoly pricing is easier (harder) to sustain in the
present model than in the repeated-games model if b < 3a (b > 3a), that is, if
consumers are relatively patient in comparison with their turn-over rate.
Finally, we note that collusion at the monopoly price constitutes a strict equi-

librium for many parameter combinations, in the sense that the maximal deviation
profit is strictly lower than the equilibrium profit. This is, for example, the case for
all (α, γ)-pairs below the thick curve in Figure 2, granted condition (11) holds.

4.5. Other strategies. So far we have focused on a certain class of strategies
– tight generalized trigger strategies. The reader might wonder to what extent
our results are predicated on this restriction. We believe they are not and in this
section we will discuss why. In particular, we claim that any collusive price that
can be sustained in subgame perfect equilibrium can also be sustained in subgame
perfect equilibrium when firms use tight generalized trigger strategies – a conclusion
that is a generalization of that for “grim” trigger strategies in the standard repeated-
game model. The reasoning in the current model has one twist that is absent
in the repeated game. The conclusion holds in the repeated-game case because
future profits – after a deviation – are as low as possible (zero) in the subsequent
continuation subgame when grim trigger strategies are used. The same holds true in
the present model when c = 0, and then also current deviation profits are as low as
possible, because consumers have the greatest incentive to postpone purchases if they
anticipate the lowest possible price (zero) the next period. For c > 0, however, the
latter no longer holds true for grim trigger strategies: current period deviation profits
are instead lowest under tight generalized trigger strategies, because consumers then
anticipate the price zero, instead of c > 0 in the next period.
To see this, consider any subgame perfect strategy profile supporting a constant

collusive price p∗. The implied punishment is then necessarily milder than under tight
generalized trigger strategies. A consumer with perfect foresight anticipates the path
of prices pe(τ), τ = 1, 2, .... under the punishment strategy profile in question, where
the (current) deviation period has been labelled τ = 0. The consumer thus buys
in the current period if and only if condition (2) holds. It immediately follows that
the quantity on the right-hand side is not larger than under tight generalized trigger
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punishment – since then pe(1) = 0. Hence, the incentives of consumers to wait
until the next period is the highest under tight generalized trigger strategies. The
current period deviation profit is thus (weakly) larger for a deviating firm under any
other strategy profile. This is a new phenomenon that does not exist in the standard
repeated-game model: intertemporal consumers are more likely to buy in the current
period if they anticipate a milder price war. The second effect — which does exist in
the standard model — is that a milder punishment also implies that future profits are
higher, as compared with those under tight generalized trigger strategies. Therefore,
the two effects work in the same direction and together imply that (total) deviation
profits are higher under any alternative strategy profile. In sum:

Proposition 5. Any collusive price that can be sustained in subgame perfect equilib-
rium can be sustained in subgame perfect equilibrium under tight generalized trigger
strategies.

5. Equilibrium sales

We have so far only considered constant collusive prices. However, a temporary
price cut, in equilibrium, could be a way for the industry to capture residual demand
and thereby increase firms’ joint profits above the monopoly profit for the industry.
Temporary equilibrium price cuts are qualitatively different than out-of equilibrium
price cuts, since in the first case, consumers do not expect an ensuing price war and
hence do “bite” during the sale. A model of sales has been developed in Sobel
(1984, 1991). However, while no consumer “dies” in Sobel’s models, and therefore
residual demand under a constant market price builds up without bounds over time,
our consumers do “die,” and residual demand thus is bounded. Nevertheless, residual
demand may be sufficiently large to motivate temporary sales in equilibrium. We
here identify conditions under which “sales equilibria” with profits above monopoly
profits do and do not exist. Roughly speaking, existence hinges upon whether or not
firms are more patient than consumers – an observation qualitatively in line with
Sobel’s findings. Similar results to the ones presented here have been obtained by
Argenton (2004) for the case of two-point valuation distributions.
In order to highlight the potential profitability of equilibrium sales, let us first

briefly consider an extreme case. Suppose that consumers are maximally impatient,
γ = 0, and that all firms ask the monopoly price, pm, in all “normal” periods, and
some lower price ps in a unique sales period, t = S. Then each firm earns its share
of the industry monopoly revenue, αΠ (pm) /n, in all normal periods, just as under
constant collusion at the monopoly price. For although new consumers anticipate
the upcoming sale, their impatience drives them to buy in their first period in the
market. In the sales period, however, also all old consumers with valuations between
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ps and pm buy. Choosing the sales price ps optimally, all firms earn more in that
period than at the monopoly price:

max
ps∈[0,pm]

ps − c

n
[αD(ps) + (1− α)max {0,D (ps)−D(pm)}] (24)

≥ α

n
max

p∈[0,pm]
Π(p) =

α

n
Π(pm).

Generically, this inequality holds strictly, and, by continuity, it then also holds for all
γ > 0 sufficiently close to zero. Moreover, the deviation incentive, both in “normal”
and “sales” periods, can be analyzed along the lines developed above for steady-state
collusion.
More generally and precisely, consider recurrent sales, where all firms set the

same sales price ps every S periods, where S > 1 is an integer, and ask the same price
po ≥ ps in all other, “ordinary,” periods. In all non-sales periods, only new consumers
buy, and only those with valuations above vσ (po, ps), where σ is the number of periods
remaining before the next sale, see equation (3). All other young consumers in the
cohort will postpone purchase until the next sale, or not buy at all. Hence, if the
sale occurs in periods 0, S, 2S, 3S..., then industry profits (per new consumer) in
periods t = 1, 2, ...S − 1 are

Πt (p
s, po) = (po − c)

¡
1− F

£
vS−t (po, ps)

¤¢
,

and

ΠS (p
s, po) = (ps − c) [1− F (ps)]+

S−1X
t=1

(1− α)S−t (ps − c)
¡
F
£
vS−t (po, ps)

¤
− F (ps)

¢
.

We note that the critical valuation for purchase in a pre-sales period, t < S, is creasing
in t:

vS−t (po, ps) =
po − βS−tps

1− βS−t
= po +

po − ps

βt−S − 1.

Consequently, aggregate demand and industry profits decline over time t as the sale
in period S comes closer. The present value of the expected stream of future profits
thus varies over each sales cycle.
We report two results, one positive and one negative, for the profitability and sus-

tainability of sales equilibria of this form. For the positive result, suppose parameters
are such that pm is sustainable as a strict steady-state subgame perfect equilibrium
(an example was given in section 4). Does there then exists a subgame perfect strat-
egy profile, with recurrent sales as defined above, which results in a higher discounted
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payoff to all firms? In order to answer this question, we consider the discounted sum
of industry profits during a whole cycle, as evaluated from the first period after a
sale:17

Ψ (ps, po) =
SX
t=1

δtΠt (p
s, po) .

For an affirmative answer to the posed question, it is sufficient to show that there
exists a price pair (ps, pm) such that (a) Ψ (ps, pm) > Ψ (pm, pm) and (b) there exists
a subgame-perfect strategy profile that induces the sales price-pair (ps, pm).

Proposition 6. Suppose that the valuation distribution F is differentiable with pos-
itive density at the monopoly price, pm, and that the monopoly price is sustainable
as a strict steady-state subgame perfect equilibrium. If δ > γ, then there exists a
continuum of subgame perfect sales price-pairs (ps, pm) that yield higher discounted
payoffs to all firms than collusion at the monopoly price.

Proof: We first establish that Ψ (ps, pm) > Ψ (pm, pm) for all ps < pm sufficiently
close to pm by way of taking the derivative of Ψ (ps, pm) with respect to its first
argument, at ps = pm:

Ψ1 (p
s, pm) | ps=pm =

S−1X
t=1

δt
(pm − c)F 0 (pm)

βt−S − 1

+δS

"
Π0 (pm)−

S−1X
t=1

(1− α)S−t
βt−S (pm − c)F 0 (pm)

βt−S − 1

#

= δS
S−1X
t=1

δt−S − (1− α)S−t βt−S

βt−S − 1 (pm − c)F 0 (pm) ,

where we used the first-order condition Π0 (pm) = 0. By hypothesis, F 0 (pm) > 0
and pm > c. Hence, Ψ1 < 0, if δt−S < (1− α)S−t βt−S. Using β = (1− α) γ,
the last inequality is equivalent with δ > γ. This establishes our first claim. The
second claim follows by continuity: since by hypothesis pm is a strict equilibrium
price, generalized trigger strategies will also support, in subgame perfect equilibrium,
sales prices ps < pm sufficiently close to pm. End of proof.

In other words, if firms are more patient than consumers, then there exist sales
equilibria that result in profits above monopoly profits. What if consumers are more

17The following results do not depend on this choice: they can be shown to be independent of
which period in the cycle is taken as the point of evaluation.
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patient than the firms? At least in the special case of linear demand, it is not difficult
to show that sales equilibria are unprofitable:

Proposition 7. Suppose that the valuation distribution F is uniform and c < p∗ ≤
pm. If δ ≤ γ, then Ψ (ps, p∗) < Ψ (p∗, p∗) for all ps < p∗.

Proof: Let p∗ ∈ (c, pm] be given, and take the derivative of Ψ (ps, p∗) with respect
to its first argument, at any ps ≤ p∗:

Ψ1 (p
s, p∗) = δS

"
Π0 (ps) + λ

S−1X
t=1

δt−S − (1− α)S−t βt−S

βt−S − 1 (p∗ − c)

#
,

where λ > 0 is the constant density of F . We have Π0 (ps) > 0 for all ps < pm, and
each term in the sum is non-negative if δt−S ≥ (1− α)S−t βt−S, or, equivalently, if
δ ≤ γ. End of proof.

6. Consumers with adaptive expectations

Some generalizations to consumers with imperfect foresight seem analytically feasible
in our modelling framework. For example, if all consumers have adaptive expec-
tations in the sense that they always expect the current price to prevail also in the
future, then a deviating firm will sell to all new and old consumers with valuations
above the under-cutting price, and hence earn a higher profit than when consumers
have perfect foresight. Consequently, it is harder to collude against consumers with
adaptive expectations.
To see the implications of adaptive expectations more precisely, note that such

consumers’ behavior is identical with that of consumers with perfect foresight but
with maximal impatience. The definition of aggregate demand in equation (6) is
valid for any expectations, not just perfect foresight, and all of the above analysis
applies to adaptive expectations, by way of either setting consumers’ price expecta-
tion equal to the current price, pe = p, or, equivalently, by assuming perfect foresight
but setting the effective discount factor β equal to zero. It follows immediately from
Proposition 3 that collusion against consumers with adaptive expectations (β = 0) is
easier than collusion against consumers with rational expectations (β > 0). It also
follows that collusion against consumers with adaptive expectations and intertem-
poral substitution possibilities (β = 0 and α < 1) is easier than collusion in the
repeated-games model (β = 0 and α = 1), see Proposition 3 and the example in
section 4.4.
The current model also allows for intermediate cases, when either a population

fraction λ ∈ (0, 1) of the consumers have perfect foresight and the rest adaptive
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expectations, or where all consumers form expectations that are a convex combination
of adaptation and perfect foresight. For instance, if p < p∗ is the current price and
firms use generalized trigger strategies, then adaptive expectations give pe = p, perfect
foresight pe = 0, and intermediate expectations pe = µp for some µ ∈ (0, 1).

7. Concluding comments

Our model of Bertrand competition in recurrent market interaction is built on a
number of simplifying assumptions. One such assumption is that consumers are ho-
mogeneous with respect to their time preferences: all consumers are assumed to have
the same discount factor β. A less restrictive assumption would be to assume that
β, like the valuation v of the good, is drawn from some fixed probability distribution.
Another simplification is that we have focused on the case of an indivisible good.

It seems likely that the qualitative results carry over also to the case of divisible
goods. A third simplification is the assumption of no resale. For many durable
goods, there are second-hand markets, and these markets interact in an important
way with the markets for new units. These are tasks for future research.
Also, we have focused exclusively on the idealized case of perfect foresight on be-

half of the consumers. Some generalizations to consumers with imperfect foresight
seem analytically feasible in our modelling framework, see comments in the preced-
ing section. A study of collusion against boundedly rational consumers would be a
valuable extension.
We finally mention yet two other avenues for future research, namely to apply

the present model of intertemporal demand to Cournot oligopoly and to oligopolistic
competition when firm’s products are imperfect substitutes.

References

[1] Argenton, C. (2004): “Equilibrium sales in Bertrand oligopoly with intertempo-
ral demand”, Boston University, mimeo.

[2] Ausubel, L., and R. Deneckere (1987): “One is almost enough for monopoly”,
Rand Journal of Economics 18, 255-274.

[3] Coase, R. (1972): “Durability and monopoly”, Journal of Law and Economics
15, 143-149.

[4] Conlisk, J., E. Gerstner, and J. Sobel (1984): “Cyclic Pricing by a Durable
Goods Monopolist”, Quarterly Journal of Economics 99, 489-505.

[5] Dutta, P. (1995): “A Folk theorem for stochastic games”, Journal of Economic
Theory 66, 1-32.



DYNAMIC BERTRAND COMPETITION WITH INTERTEMPORAL DEMAND 27

[6] Fudenberg, D., and J. Tirole (1991): Game Theory, MIT Press, Cambridge, MA.

[7] Gul, F., H. Sonnenschein, and R. Wilson (1986): “Foundations of dynamic
monopoly and the Coase conjecture”, Journal of Economic Theory 39, 155-190.

[8] Gul, F. (1987): “Noncooperative collusion in durable goods oligopoly”, Rand
Journal of Economics 18, 248-254.

[9] Maskin, E., and J. Tirole (1988): “A theory of dynamic oligopoly, II: Price
competition, kinked demand curves and fixed costs”, Econometrica 56, 571-600.

[10] Kirman, A., and M. Sobel (1974): “Dynamic oligopoly with inventories”, Econo-
metrica 42, 279-287.

[11] Radner, R. (1999): “Viscous demand”, mimeo., Stern School, NYU, New York.

[12] Selten, R. (1965a): “Spieltheoretische Behandlung eines Oligopolmodells mit
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