
A Refinement of the Myerson Value∗

Atsushi Kajii† Hiroyuki Kojima‡ Takashi Ui§¶

May 2006

Abstract
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1 Introduction

Myerson (1977, 1980) made a seminal contribution to describe how the outcome of a coopera-
tive game might depend on which groups of players hold cooperative planning conferences. A
conference is defined as a set of two or more players and a collection of conferences is called
a conference structure.1 Myerson (1977, 1980) augmented a cooperative game by a conference
structure and defined another cooperative game where the conference structure determines which
coalitions are feasible. The feasible coalition is the one in which any pair of players are either di-
rectly or indirectly connected (i.e. path connected) by the conferences contained in the coalition.
Myerson (1977, 1980) showed that the Shapley value of the induced cooperative game can be
characterized by two axioms: fairness and component efficiency. This allocation rule is referred
to as the Myerson value in the subsequent literature.2

We emphasize that the Myerson value treats direct and indirect connections equally. For
example, consider a conference structure {{1, 2}, {2, 3}}. Player 1 and player 2 are directly
connected in the sense that they have a chance of direct communication in a conference {1, 2}, and
so are player 2 and player 3. On the other hand, player 1 and player 3 are not directly connected
but indirectly connected in the sense that they have a chance of indirect communication via
an intermediary, player 2. Now suppose that a conference {1, 2, 3} is added to the conference
structure, by which player 1 and player 3 are directly connected. But in the construction of the
Myerson value, payoff allocations are the same in the two cases.

This paper proposes a refinement of the Myerson value which distinguishes direct and indirect
connections. Similar to Myerson (1977, 1980), we augment a cooperative game by a conference
structure and define another cooperative game where the conference structure determines which
coalitions are feasible. But different from Myerson (1977, 1980), the feasible coalition is the one
in which any pair of players are directly connected by the conferences contained in the coalition.
In the main result, we show that the Shapley value of the induced cooperative game can be
characterized by three axioms: fairness, complete component efficiency, and no contribution by
unconnected players. The latter two new axioms describe the behavior of the allocation rule
distinguishing direct and indirect connections. To establish the main result, we take advantage
of the idea of potentials for cooperative games originated by Hart and Mas-Colell (1989). We
prove that if an allocation rule satisfies the three axioms, then it is represented in terms of the
marginal contributions of the potential for the induced cooperative game, which leads us to the
main result. Also in the main result, we provide a characterization of the potential for the induced
cooperative game, which extends the result of Hart and Mas-Colell (1989).

1Myerson (1977) considered special conferences with exactly two players and regarded a conference structure

as a network, while Myerson (1980) considered general conferences and nontransferable utility.
2The study of allocation rules with partial cooperation possibilities is well-documented since Aumann and

Drèze (1974). For other allocation rules, see Meesen (1988), Borm et al. (1992), Hamiache (1999), Bilbao and

López (2006), and the review by Slikker and van den Nouweland (2001), among others.
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The organization of the paper is as follows. Preliminary definitions and results are summarized
in section 2. Conference structures and allocation rules are introduced in section 3. The main
result is stated in section 4, which is proved in section 5. In section 6, we compare our result
and that of Myerson (1977, 1980) and show that our allocation rule is in fact a refinement of the
Myerson value. In the same section, we point out some connection of our result to the network
games of Jackson and Wolinsky (1996).

2 Preliminaries

Let N = {1, . . . , n} be a set of players. A subset S ∈ 2N is referred to as a coalition. A game v

is a function from 2N to R with v(∅) = 0. The unanimity game on T ∈ 2N is denoted by uT and
defined as

uT (S) =

{
1 if T ⊆ S,

0 otherwise.

A collection of coalitions P ⊆ 2N is partially ordered with the set inclusion relation. Regard
[uX(Y )]X,Y ∈P as a |P| × |P| matrix and observe that it is non-singular and thus invertible.
The Möbius function of P is defined as a function µP : P × P → R such that the matrix
[µP(X,Y )]X,Y ∈P is the inverse matrix of [uX(Y )]X,Y ∈P ;3 that is, for X,Y ∈ P, it holds that

∑
T∈P

µP(X,T )uT (Y ) =
∑
T∈P

uX(T )µP(T, Y ) =

{
1 if X = Y ,

0 otherwise.
(1)

It is known that the Möbius function µP is determined inductively by the following rule:4

µP(X,Y ) =


1 if X = Y ,

0 if X 6⊆ Y ,

−
∑

T∈P:X⊆T⊂Y

µP(X,T ) if X ⊂ Y .
(2)

For the special case of P = 2N , it holds that

µP(X,Y ) =

{
(−1)|X|−|Y | if X ⊆ Y ,

0 otherwise.

The following result is referred to as the principle of Möbius inversion.

3A function ζP : P×P → R such that ζP (X, Y ) = uX(Y ) for all X, Y ∈ P is called the zeta function of P. The

zeta function and the Möbius function are defined on any partially ordered set. See a textbook on combinatorics

such as Lint and Wilson (1992).
4When X ⊂ Y and |Y | − |X| = 1, this formula requires that µP (X, Y ) = −µP (X, X) = −1, and once

µP (X, Y ) is determined for X ⊂ Y with |Y | − |X| ≤ k, then the formula determines µP (X, Y ) for X ⊂ Y with

|Y | − |X| = k + 1, and so on.
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Lemma 1 For any function v : P → R, if f : P → R is given by

f(X) =
∑
T∈P

v(T )µP(T,X) for all X ∈ P, (3)

then it holds that
v(X) =

∑
T∈P

f(T )uT (X) for all X ∈ P. (4)

Conversely, for any function f : P → R, if v : P → R is given by (4), then (3) holds.

The principle of Möbius inversion can be easily checked because (1) and (3) imply that

∑
T∈P

f(T )uT (X) =
∑
T∈P

( ∑
T ′∈P

v(T ′)µP(T ′, T )

)
uT (X)

=
∑

T ′∈P

v(T ′)

(∑
T∈P

µP(T ′, T )uT (X)

)
= v(X) for all X ∈ P,

and (1) and (4) imply that

∑
T∈P

v(T )µP(T,X) =
∑
T∈P

( ∑
T ′∈P

f(T ′)uT ′(T )

)
µP(T,X)

=
∑

T ′∈P
f(T ′)

(∑
T∈P

uT ′(T )µP(T,X)

)
= f(X) for all X ∈ P.

The principle of Möbius inversion for the special case of P = 2N leads us to the well known fact
that any game v is uniquely represented as a linear combination of unanimity games (Shapley,
1953):

v =
∑

T∈2N

βT uT where βT =
∑

T∈2N :S⊆T

(−1)|T |−|S|v(S).

Denote by δiv(S) the marginal contribution of player i ∈ S to v(S); that is,

δiv(S) = v(S) − v(S\{i}).

The Shapley value of v is the vector of payoffs φ(v) ∈ RN given by the following formula (Shapley,
1953):

φi(v) =
∑

S∈2N :i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

δiv(S) for all i ∈ N.

In particular, the Shapley value of uT is given by

φi(uT ) =

{
1/|T | if i ∈ T ,
0 otherwise.
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Since the Shapley value is linear in games, we have an alternative formula for the Shapley value
of v =

∑
T∈2N βT uT as follows:

φi(v) =
∑

T∈2N

βT φi(uT ) =
∑

T∈2N :i∈T

βT /|T |. (5)

A potential for a game v is a game p such that∑
i∈S

δip(S) = v(S) (6)

for all S ∈ 2N . Hart and Mas-Colell (1989) showed the following result.5

Proposition 1 There exists a unique potential p for v =
∑

T∈2N βT uT , which is given by

p =
∑

T∈2N

βT

|T |
uT .

Moreover, the vector of the marginal contributions (δip(N))i∈N coincides with the Shapley value
of v; that is,

δip(N) = φi(v) for all i ∈ N.

3 Conference structures and allocation rules

To describe how players organize their cooperation, we specify which groups of players are willing
and able to confer together for the purpose of planning cooperative actions. Myerson (1980) have
used the term a conference to refer to any set of two or more players who might meet together
to discuss their cooperative plans. So, we define a conference as a coalition with two or more
players. A conference structure is then any collection of conferences. The collection of all possible
conference structures is denoted by

CS = {H ⊆ 2N | |H| ≥ 2 for all H ∈ H}.

We write HS = {H ∈ H |H ⊆ S} and H−i = HN\{i} for H ∈ CS, S ∈ 2N , and i ∈ N .
We consider two types of connections between players, direct and indirect ones.

Definition 1 Players i, j ∈ N are said to be directly H-connected in a coalition S if i = j or
there exists a conference H ∈ HS with {i, j} ⊆ H. Players i, j ∈ N are said to be H-connected
in a coalition S if there exist a sequence of players i1, ..., im with i = i1 and j = im such that ik

and ik+1 are directly H-connected in S for k = 1, . . . ,m − 1.
5Originally, Hart and Mas-Colell (1989) defined a potential as a real-valued function over the space of games.

The value assigned by the potential to the restriction of a game v to a coalition S corresponds to p(S) in this

paper.
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Thus, two players are directly H-connected in S if they can be coordinated by direct com-
munication; and two players are H-connected in S if they can be coordinated either by direct
communication or by indirect communication via intermediaries.6 By definition, two players are
(directly) H-connected in S if and only if they are (directly) HS-connected in S. Also by defi-
nition, if two players are (directly) H-connected in S then they are (directly) H-connected in T

with S ⊆ T .
The above notions of connectedness for players induce the corresponding notions for coali-

tions.7

Definition 2 A coalition S ∈ 2N is said to be H-complete if any pair of players in S are directly
H-connected in S. A coalition S ∈ 2N is said to be H-connected if any pair of players in S are
H-connected in S.

By definition, any singleton is H-complete and H-connected. Note that S is H-complete if
and only if it is HS-complete, and similarly, S is H-connected if and only if it is HS-connected.

Let cm(H) ∈ CS denote the collection of all H-complete conferences, and let cn(H) ∈ CS
denote the collection of all H-connected conferences (so, singletons are excluded). Both cm(·) and
cn(·) are monotonic as operators on CS in the sense that cm(H) ⊆ cm(H′) and cn(H) ⊆ cn(H′)
if H ⊆ H′. It follows that

H ⊆ cm(H) ⊆ cn(H), (7)

since any pair of players in S ∈ H are directly H-connected in S and any pair of players in
S ∈ cm(H) are (directly) H-connected in S. Furthermore, we can show the properties below.8

Lemma 2 Players i, j ∈ N are directly H-connected in a coalition S if and only if they are
directly cm(H)-connected in S. Thus, it holds that

cm(H) = cm(cm(H)).

Proof. If i = j then the above claim holds trivially. Suppose that i, j ∈ N with i 6= j are directly
H-connected in S. Then, there exists H ∈ HS with {i, j} ⊆ H. Since H ∈ cm(H)S , they are
also directly cm(H)-connected in S. Conversely, suppose that i, j ∈ N with i 6= j are directly
cm(H)-connected in S. Then, there exists H ∈ cm(H)S with {i, j} ⊆ H. Since H is H-complete,
there exists T ∈ HH ⊆ HS with {i, j} ⊆ T . This implies that i and j are directly H-connected in
S. The equivalence of the direct H-connected relation and the direct cm(H)-connected relation
implies the equivalence of S ∈ cm(H) and S ∈ cm(cm(H)).

6In Myerson (1980), players i, j ∈ N are said to be H-connected in S if i = j or there exists a sequence of

conferences H1, . . . , Hm ∈ HS such that i ∈ H1, j ∈ Hm, and Hk ∩ Hk+1 6= ∅ for k = 1, . . . , m − 1, which is

equivalent to the above definition.
7The notion of H-completeness is introduced by Kajii et al. (2005) for events, i.e., subsets of the set of states,

and used for a characterization of the Choquet integral. The term “complete” is adopted from an analogy to

complete graphs. For S ∈ 2N , consider an undirected graph with a vertex set S such that {i, j} ⊆ S is an edge if

there is H ∈ HS satisfying {i, j} ⊆ H. This is a complete graph if and only if S is H-complete.
8Kajii et al. (2005) obtained results similar to Lemma 2.
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Lemma 3 Players i, j ∈ N are H-connected in a coalition S if and only if they are cn(H)-
connected in S. Thus, it holds that

cn(H) = cm(cn(H)) = cn(cn(H)).

Proof. Suppose that i, j ∈ N are H-connected in S. Then, there exist a sequence of players
i1, ..., im with i = i1 and j = im such that ik and ik+1 are directly H-connected in S for
k = 1, . . . ,m − 1. Since H ⊆ cn(H), ik and ik+1 are directly cn(H)-connected in S for each k.
This implies that i and j are cn(H)-connected in S. Conversely, suppose that i, j ∈ N are cn(H)-
connected in S. Then, there exist a sequence of players i1, ..., im with i = i1 and j = im such that
ik and ik+1 are directly cn(H)-connected in S for k = 1, . . . ,m−1. Thus, there exists Sk ∈ cn(H)S

with {ik, ik+1} ⊆ Sk, which implies that ik and ik+1 are H-connected in S for each k. Since the
H-connected relation is transitive, i and j must be H-connected in S. The equivalence of the
H-connected relation and the cn(H)-connected relation implies the equivalence of S ∈ cn(H) and
S ∈ cn(cn(H)), establishing cn(H) = cn(cn(H)). Since cn(H) ⊆ cm(cn(H)) ⊆ cn(cn(H)) by (7),
cn(H) = cm(cn(H)) = cn(cn(H)) must follow.

Note that the H-connected relation in S is an equivalence relation, although the direct H-
connected relation in S might not be. For S ∈ 2N and H ∈ CS, let S/H denote the partition of
S consisting of the equivalence classes induced by the H-connected relation in S; that is,

S/H = {{j ∈ S | i and j are H-connected in S} | i ∈ N}.

It follows that S/ cn(H) = S/H = S/HS by the equivalence of the cn(H)-connected, H-connected,
and HS-connected relations in S. We call an element of S/H a component of S. A component of
S is a maximal H-connected coalition in S because any pair of players in a H-connected coalition
are H-connected in the component to which they both belong.

An allocation rule assigns a vector of payoffs to each conference structure; that is, an allocation
rule is a mapping f : CS → RN where player i’s payoff is fi(H) for H ∈ CS. Myerson (1977,
1980) considered the following axioms for an allocation rule f .

Component efficiency (CE) ∑
i∈S

fi(H) = v(S) if S ∈ N/H.

Fairness (F)
fi(H) − fi(H\{H}) = fj(H) − fj(H\{H}) if i, j ∈ H ∈ H.

Balanced contribution (BC)

fi(H) − fi(H−j) = fj(H) − fj(H−i) for all i, j ∈ N.
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Component efficiency (CE) says that if S is a component of N , i.e., a maximal H-connected
coalition, then the members of S ought to allocate to themselves the total wealth v(S) available
to them. Fairness (F) says that all players in a conference gain equally from their agreement to
form the conference. Balanced contribution (BC) says that player j’s contribution to i always
equals i’s contribution to j. The next result (Myerson, 1980) shows that BC implies F.

Lemma 4 If an allocation rule satisfies BC then it satisfies F.

To characterize an allocation rule satisfying the axioms above, Myerson (1977, 1980) con-
sidered a game rH determined by the collection of H-connected coalitions, which is defined as
follows:

rH(S) =
∑

T∈S/H

v(T ) for all S ∈ 2N . (8)

The game rH is called the restricted game of v. The following result, originally due to Myerson
(1977, 1980) and later elaborated by van den Nouweland et al. (1992), is fundamental.

Proposition 2 The following three statements about an allocation rule fM are equivalent.

(i) fM satisfies CE and F.

(ii) fM satisfies CE and BC.

(iii) fM (H) is the Shapley value of the restricted game rH. That is, fM
i (H) = φi(rH) for all

i ∈ N and H ∈ CS.

Since the restricted game rH is uniquely determined from v and H by (8), each statement
in Proposition 2 identifies a unique allocation rule. Especially, this proposition shows that there
exists a unique allocation rule satisfying CE and F. This allocation rule is referred to as the
Myerson value.

Note that rH = rcn(H) because S/H = S/ cn(H). This means that the Myerson value as-
signs the same vector of payoffs to different conference structures as far as the collections of
H-connected conferences are the same, even if those of H-complete conferences are distinct. In
this sense, the Myerson value treats direct and indirect connections equally. For example, let
N = {1, 2, 3, 4} and

H1 = {{1, 2}, {2, 3}, {3, 4}, {1, 2, 3, 4}},

H2 = {{1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {1, 2, 3, 4}}, (9)

H3 = {{1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}}.

Since cn(H1) = cn(H2) = cn(H3) = H3, the payoff allocations by the Myerson value are identical
for all the above conference structures. On the other hand, we have H1 = cm(H1), H2 = cm(H2),
and H3 = cm(H3). In the next section, we propose an allocation rule which distinguishes
conference structures with distinct collections of H-complete conferences.
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4 The main result

Our motivation is similar to Myerson’s but we are interested in an allocation rule based upon
direct connections. We formalize this idea in terms of the following new axioms and replace CE
with them.

Complete component efficiency (CCE)∑
i∈S

fi(H) = v(S) if S ∈ N/H and S is H-complete.

No contribution by unconnected players (NCU)

fi(H) = fi(H−j) if i, j ∈ N are not directly H-connected in N.

Complete component efficiency (CCE) is in the same spirit as Myerson’s component efficiency.
However, since we regard direct connections as basic units for communication, a component
S ∈ N/H can function and allocate the total wealth v(S) if S is H-complete. To put it differently,
if S is not H-complete, there are some pairs in S who cannot directly meet, and thus an agreement
for cooperation may not occur. Clearly, CE implies CCE, but not vice versa.

No contribution by unconnected players (NCU) implies that player i’s payoff remains the
same when all conferences containing j, who are not directly H-connected with i, are removed.
In other words, player j’s contribution to i equals zero. Note by symmetry that fi(H)−fi(H−j) =
fj(H) − fj(H−i)(= 0), which is the special case of BC. It can be readily seen that the Myerson
value does not satisfy NCU because it treats direct and indirect connections equally.

To characterize an allocation rule satisfying the axioms above, we consider a game determined
by the collection of H-complete coalitions. Write cm∗(H) = cm(H) ∪ {{i} | i ∈ N} for the
collection of all H-complete coalitions and let µcm∗(H) be the Möbius function of cm∗(H). Define
the following game vH, which we call the direct-connection restricted (d-restricted ) game of v:

vH =
∑

T∈2N

βH
T uT where βH

T =


∑

S∈cm∗(H)

µcm∗(H)(S, T )v(S) if T ∈ cm∗(H),

0 if T 6∈ cm∗(H).
(10)

We will see in section 6 that the construction of vH generalizes that of the restricted game rH.
The following lemma provides a simple characterization of vH.

Lemma 5 Let w =
∑

T∈2N γT uT be a game. Then, w = vH if and only if w(S) = v(S) for all
S ∈ cm∗(H) and γT = 0 for all T 6∈ cm∗(H).

Proof. Assume that w(S) = v(S) for all S ∈ cm∗(H) and γT = 0 for all T 6∈ cm∗(H). Then,

w(S) =
∑

T∈cm∗(H)

γT uT (S) = v(S) for all S ∈ cm∗(H). (11)
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By Lemma 1 with f(X) = γX and v(X) = w(X) restricted to cm∗(H), (11) is equivalent to

γT =
∑

S∈cm∗(H)

µcm∗(H)(S, T )v(S) for all T ∈ cm∗(H). (12)

By (10) and (12), γT = βH
T for all T ∈ 2N and thus w = vH. Conversely, assume that w = vH

and thus γT = βH
T for all T ∈ 2N . Then, (10) implies that γT = 0 for all T 6∈ cm∗(H) and (12),

the latter of which is equivalent to (11). Therefore, w(S) = v(S) for all S ∈ cm∗(H) and γT = 0
for all T 6∈ cm∗(H).

Now we are ready to state our main result, which characterizes an allocation rule satisfying
CCE, NCU, and F.

Proposition 3 The following four statements about an allocation rule f are equivalent.

(i) f satisfies CCE, NCU, and F.

(ii) f satisfies CCE, NCU, and BC.

(iii) f(H) is the vector of the marginal contributions of a game pH satisfying the following two
conditions:∑

i∈S

δip
H(S) = v(S) if S is H-complete. (13)

δip
H(S) = δip

H(S\{j}) if i, j ∈ S are not directly H-connected in S. (14)

That is, fi(H) = δip
H(N) for all i ∈ N and H ∈ CS.

(iv) f(H) is the Shapley value of the d-restricted game vH. That is, fi(H) = φi(vH) for all
i ∈ N and H ∈ CS.

Since the d-restricted game vH is uniquely determined from v and H by (10), each statement
in Proposition 3 identifies a unique allocation rule. Especially, this proposition shows that there
exists a unique allocation rule satisfying CCE, NCU, and F. We call this allocation rule the
direct-connection Myerson (d-Myerson ) value.

Notice the resemblance between pH in (iii) and the potential for v. The latter satisfies (6) for
all coalitions, whereas the former satisfies it for all H-complete coalitions, which is the condition
(13). The other condition (14) requires that the marginal contribution of player i to pH(S) be
determined by players who are directly H-connected in S with i. In both of the conditions, the
direct H-connected relation is essential. Note that if H is the finest conference structure (hence
any coalition is H-complete), then (13) is identical to (6), and (14) holds trivially because any
pair of players are directly H-connected in any coalition containing them. Thus in this case,
pH coincides with the potential for v by Proposition 1. As will be shown in Lemma 9 in the
next section, pH is the potential for vH, which will explain why the allocation rule is uniquely
determined.
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5 The proof

This section provides the proof of Proposition 3. It proceeds in the following order: (i) ⇒ (ii) ⇒
(iii), (iii) ⇔ (iv), and (iii) ⇒ (ii) ⇒ (i).

5.1 (i) ⇒ (ii) ⇒ (iii)

As the next result shows, F and NCU together imply BC. Thus, if an allocation rule satisfies
CCE, NCU, and F, then it satisfies CCE, NCU, and BC, establishing (i) ⇒ (ii).

Lemma 6 If an allocation rule f satisfies F and NCU, then it satisfies BC.

Proof. If i, j ∈ N are not directly H-connected in N , then NCU implies that fi(H) − fi(H−j) =
fj(H) − fj(H−i) = 0. If i, j ∈ N are directly H-connected in N , then write {H ∈ H | {i, j} ⊆
H} = {H1, . . . ,Hk}. By applying F repeatedly, we have

fi(H) − fi(H\{H1, . . . ,Hk}) = fj(H) − fj(H\{H1, . . . ,Hk}). (15)

Note that i and j are not directly H\{H1, . . . ,Hk}-connected in N since H\{H1, . . . ,Hk} =
{H ∈ H | {i, j} 6⊆ H}. Thus, NCU implies that

fi(H\{H1, . . . ,Hk}) = fi((H\{H1, . . . ,Hk})−j) = fi(H−j) (16)

where the latter equality holds because (H\{H1, . . . ,Hk})−j = {H ∈ H | {i, j} 6⊆ H and j 6∈
H} = {H ∈ H | j 6∈ H} = H−j . Similarly, it follows that fj(H\{H1, . . . ,Hk}) = fj(H−i). By
plugging this and (16) into (15), we have established BC.

As noted by Hart and Mas-Colell (1989), BC is a finite difference analogue of the Frobenious
integrability condition, i.e., the symmetry of the cross partial derivatives, which suggests that the
solution admits a potential. In fact, BC assures the existence of a “potential” in the following
sense.9

Lemma 7 If an allocation rule f satisfies BC, then, for each H ∈ CS, there exists a game pH

such that fi(HS) = δip
H(S) for all i ∈ S and S ∈ 2N .

Proof. Define a game pH by the following rule: for each S = {i1, . . . , ik} ∈ 2N with i1 < · · · < ik,
pH(S) =

∑k
l=1 fil

(H{i1,...,il}). Note that, by construction, if i = max S then fi(HS) = pH(S) −
pH(S\{i}) = δip

H(S).
We show by induction that fi(HS) = δip

H(S) for all i ∈ S and S ∈ 2N . If |S| = 1 and
S = {i}, then fi(H{i}) = pH({i})− pH(∅) = δip

H({i}). Suppose as an induction hypothesis that

9Consider a vector-valued mapping F : Rn → Rn. In vector analysis, a function f : Rn → R is said to be a

potential of F if F = (∂f/∂xi)
n
i=1.
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fi(HS) = δip
H(S) for all i ∈ S and S ∈ 2N with |S| ≤ k < n. Let S = {i1, . . . , ik+1} ∈ 2N with

i1 < · · · < ik+1. For every i ∈ S, by applying BC (with HS instead of H), we have

fi(HS) = fik+1(HS) − fik+1((HS)−i) + fi((HS)−ik+1)

= fik+1(HS) − fik+1(HS\{i}) + fi(HS\{ik+1}). (17)

By the construction of pH,

fik+1(HS) = pH(S) − pH(S\{ik+1}). (18)

By the induction hypothesis,

fik+1(HS\{i}) = pH(S\{i}) − pH(S\{i, ik+1}), (19)

fi(HS\{ik+1}) = pH(S\{ik+1}) − pH(S\{i, ik+1}). (20)

Plugging (18), (19), and (20) into (17), we have

fi(HS) = pH(S) − pH(S\{i}) = δip
H(S),

which completes the proof.

A “potential” in Lemma 7 is shown to satisfy (13) and (14) if an allocation rule satisfies CCE
and NCU in addition.

Lemma 8 Let an allocation rule f satisfy CCE and NCU. Suppose that there exists a game pH

such that fi(HS) = δip
H(S) for all i ∈ S and S ∈ 2N . Then, pH satisfies (13) and (14).

Proof. Suppose that S is H-complete. Then S ∈ N/HS and S is HS-complete. By CCE,∑
i∈S fi(HS) =

∑
i∈S δip

H(S) = v(S). Therefore, pH satisfies (13). To show that pH satisfies
(14), suppose that i, j ∈ S are not directly H-connected in S. Then, they are not directly HS-
connected in N . Thus, by NCU, δip

H(S) = fi(HS) = fi((HS)−j) = fi(HS\{j}) = δip
H(S\{j}).

Therefore, pH satisfies (14).

By Lemma 7 and Lemma 8, if an allocation rule f satisfies CCE, NCU, and BC, then there
exists a game pH satisfying (13) and (14) such that fi(H) = fi(HN ) = δip

H(N), which establishes
(ii) ⇒ (iii).

5.2 (iii) ⇔ (iv)

We shall show below that a game pH which satisfies the conditions in (iii) must be the potential
for the d-restricted game vH. This suffices to establish (iii) ⇔ (iv) since δip

H(N) = φi(vH) holds
by Proposition 1.
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Lemma 9 There exists a unique game pH satisfying (13) and (14). The game pH coincides with
the potential for the d-restricted game vH.

Proof. We first show that the potential for vH does satisfy (13) and (14). So let pH be the
potential for vH =

∑
T∈2N βH

T uT . Then by Proposition 1, pH =
∑

T∈2N (βH
T /|T |)uT . Observe

that
∑

i∈S δip
H(S) = vH(S) = v(S) if S is H-complete, where the first equality holds since pH

is the potential for vH and the second equality holds by Lemma 5. This is the condition (13).
Next, observe that, since βH

T = 0 for all T 6∈ cm∗(H),

δip
H(S) = pH(S) − pH(S\{i})

=
∑

T∈cm∗(H)S

βH
T /|T | −

∑
T∈cm∗(H)S\{i}

βH
T /|T |

=
∑

T∈cm∗(H)S :i∈T

βH
T /|T |, (21)

and similarly,

δip
H(S\{j}) =

∑
T∈cm∗(H)S\{j}:i∈T

βH
T /|T |. (22)

Now suppose that i, j ∈ S are not directly H-connected in S. Then, there is no T ∈ cm∗(H)S

such that {i, j} ⊆ T because any pair of players in T ∈ cm∗(H)S are directly H-connected in T

and thus in S. This implies that {T ∈ cm∗(H)S | i ∈ T} = {T ∈ cm∗(H)S\{j} | i ∈ T} and thus
δip

H(S) = δip
H(S\{j}) by (21) and (22). This is the condition (14).

To complete the proof, we show that a game pH satisfying (13) and (14) is unique, by con-
structing pH recursively such that in the k-th step we determine the unique value of pH(S) with
|S| = k from pH(S′) with |S′| ≤ k − 1. Start with pH(∅) = 0 since pH is a game. Consider the
k-th step with k ≥ 1 and pick any S with |S| = k. Suppose that S is H-complete. Then, (13) is
rewritten as

pH(S) = n−1

(
v(S) +

∑
i∈S

pH(S\{i})

)
.

Since pH(S\{i}) on the right hand side is uniquely calculated for each i ∈ N in the previous
step, so is pH(S) on the left hand side. Suppose that S is not H-complete. Then, there exist two
distinct players i, j ∈ S who are not directly H-connected in S. So, by (14),

pH(S) = pH(S\{i}) + pH(S\{j}) − pH(S\{i, j}). (23)

Since the terms on the right hand side are uniquely calculated in the earlier steps, so is pH(S) on
the left hand side. Note that pH(S) in (23) does not depend upon the choice of i and j because
(23) holds for any i, j ∈ S who are not directly H-connected in S. By the above procedure, we
can uniquely determine pH recursively, which establishes the uniqueness.
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5.3 (iii) ⇒ (ii) ⇒ (i)

Recall that BC implies F by Lemma 4, which establishes (ii) ⇒ (i). To prove (iii) ⇒ (ii), we use
the following lemma.

Lemma 10 Let pH be a game satisfying (13) and (14) for each H ∈ CS. Then, δip
HS (S) =

δip
H(S) for all i ∈ S and S ∈ 2N .

Proof. By Lemma 9 and Proposition 1, pH =
∑

T∈2N (βH
T /|T |)uT where

βH
T =


∑

S∈cm∗(H)

µcm∗(H)(S, T )v(S) if T ∈ cm∗(H),

0 if T 6∈ cm∗(H).

Observe that if T ⊆ R then µcm∗(H)(S, T ) = µcm∗(HR)(S, T ). This is because the recursive
construction of µcm∗(H)(S, T ) in (2) implies µcm∗(H)(S, T ) = µcm∗(H)R

(S, T ) and the definition of
H-completeness implies cm∗(H)R = cm∗(HR). Therefore, βH

T = βHR

T if T ⊆ R and thus pH(S) =∑
T⊆S βH

T /|T | =
∑

T⊆S βHR

T /|T | = pHR(S) if S ⊆ R. This implies that δip
HS (S) = δip

H(S).

We are ready to establish (iii) ⇒ (ii).

Lemma 11 Let f be an allocation rule stated in (iii). Then, f satisfies CCE, NCU, and BC.

Proof. If i 6= j, then they are not directly H−j-connected in N . Thus fi(H−j) = δip
H−j (N) =

δip
H−j (N\{j}) by (14). By setting S = N\{j} in Lemma 10, we have δip

H−j (N\{j}) =
δip

H(N\{j}). Therefore, fi(H−j) = δip
H(N\{j}), which implies BC because

fi(H) − fi(H−j) = δip
H(N) − δip

H(N\{j})

= pH(N) − pH(N\{i}) − pH(N\{j}) + pH(N\{i, j})

= δjp
H(N) − δjp

H(N\{i})

= fj(H) − fj(H−i).

If i, j ∈ N are not directly H-connected in N , then δip
H(N) = δip

H(N\{j}) by (14), and the
above equation is reduced to fi(H) − fi(H−j) = 0, which is NCU.

It remains to prove that f satisfies CCE. Let S ∈ N/H be H-complete. We first show
that δip

H(N) = δip
H(S) for i ∈ S. Let N\S = {j1, . . . , jm} and Tk = N\{j1, . . . , jk} for

k = 1, . . . ,m. Since i, j1 ∈ N are not directly H-connected in N , it holds that δip
H(N) =

δip
H(N\{j1}) = δip

H(T1) by (14). Similarly, since i, jk ∈ Tk−1 are not directly H-connected
in Tk−1, it holds that δip

H(Tk−1) = δip
H(Tk−1\{jk}) = δip

H(Tk) by (14) for k = 2, . . . ,m.
Therefore, δip

H(N) = δip
H(T1) = · · · = δip

H(Tm) = δip
H(S). Then, we have

∑
i∈S fi(H) =∑

i∈S δip
H(N) =

∑
i∈S δip

H(S) = v(S) by (13), which is CCE.
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6 Discussions

6.1 A characterization of vH

We summarize a characterization of the d-restricted game vH.

Lemma 12 Fix a game v and H ∈ CS. The following four statements about a game w =∑
T∈2N γT uT are equivalent.

(i) w = vH, i.e., w is the d-restricted game.

(ii) w(S) = v(S) if S is H-complete and γT = 0 if T is not H-complete.

(iii) {γT }T∈2N is determined recursively by the following rule:

1. γ{i} = v({i}) for all i ∈ N .

2. For T ∈ 2N with |T | ≥ 2,

• γT = v(T ) −
∑

S⊂T γS if T is H-complete,

• γT = 0 if T is not H-complete.

(iv) w satisfies the following two conditions:

w(S) = v(S) if S is H-complete. (24)

δiw(S) = δiw(S\{j}) if i, j ∈ S are not directly H-connected in S. (25)

Proof. Lemma 5 established (i) ⇔ (ii). So we prove (ii) ⇔ (iii) and (ii) ⇔ (iv).
(ii) ⇔ (iii): The rule in (iii) is rewritten as the condition that if S is H-complete then

v(S) =
∑

T⊆S γT = w(S) and if T is not H-complete then γT = 0, which is (ii).
(ii) ⇔ (iv): Let w be as stated in (ii). Then, the condition (24) is obviously satisfied. If

i, j ∈ S are not directly H-connected in S, then, as shown in the proof of Lemma 9, we have
{T ∈ cm∗(H)S | i ∈ T} = {T ∈ cm∗(H)S\{j} | i ∈ T}. Since γT = 0 for all T 6∈ cm∗(H), a
calculation similar to (21) and (22) shows that

δiw(S) =
∑

T∈cm∗(H)S :i∈T

γT =
∑

T∈cm∗(H)S\{j}:i∈T

γT = δiw(S\{j}),

which is the condition (25).10 Thus, (ii) implies (iv).
Suppose that w satisfies the conditions in (iv). To prove that (iv) implies (ii), it suffices to

show that w is uniquely determined because vH is the unique game that satisfies the conditions
10Kajii et al. (2005) considered a condition similar to (25) and called it modularity for H-decomposition pairs.

They showed that γT = 0 for all T 6∈ cm∗(H) if and only if w is modular for H-decomposition pairs. It can be

readily shown that (25) and modularity for H-decomposition pairs are equivalent.
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in (ii) by Lemma 5, which also satisfies the conditions in (iv) as discussed above. To show the
uniqueness, we construct w recursively such that in the k-th step we determine the unique value
of w(S) with |S| = k from w(S′) with |S′| ≤ k − 1. Start with w(∅) = 0. Consider the k-th step
with k ≥ 1 and pick any S with |S| = k. If S is H-complete, then w(S) = v(S) by (24). If S is
not H-complete, then there exist i, j ∈ S who are not directly H-connected in S and so, by (25),

w(S) = w(S\{i}) + w(S\{j}) − w(S\{i, j}). (26)

Since the terms on the right hand side are uniquely calculated in the earlier steps, so is w(S) on
the left hand side. Note that w(S) in (26) does not depend upon the choice of i and j because
(26) holds for any i, j ∈ S who are not directly H-connected in S. By the above procedure, we
can uniquely determine w recursively, which establishes the uniqueness.

6.2 The Myerson value and the d-Myerson value

As the next result shows, we can derive the restricted game rH from the d-restricted game vH.

Lemma 13 For each H ∈ CS, it holds that vcn(H) = rH.

Proof. We prove that

vcn(H)(S) =
∑

T∈2N

β
cn(H)
T uT (S) =

∑
T∈S/H

v(T ) for all S ∈ 2N . (27)

Let us write cn∗(H) = cn(H)∪{{i} | i ∈ N}, which is the collection of all H-connected coalitions.
Note that β

cn(H)
T = 0 for all T 6∈ cm∗(cn(H)) by Lemma 5. Since cm(cn(H)) = cn(H) by

Lemma 3, it follows that cm∗(cn(H)) = cm(cn(H)) ∪ {{i} | i ∈ N} = cn(H) ∪ {{i} | i ∈ N} =
cn∗(H). Thus, for each S ∈ 2N ,

vcn(H)(S) =
∑
T⊆S

β
cn(H)
T =

∑
T∈cm∗(cn(H))S

β
cn(H)
T =

∑
T∈cn∗(H)S

β
cn(H)
T . (28)

Observe that each T ∈ cn∗(H)S is a H-connected coalition contained in S and thus there exists
R ∈ S/H such that T ⊆ R because any pair of players in T are H-connected in S and thus they
are H-connected in the component of S to which they both belong. Note that such R ∈ S/H is
unique. Hence we have

∑
T∈cn∗(H)S

β
cn(H)
T =

∑
R∈S/H

 ∑
T⊆R

β
cn(H)
T

 =
∑

R∈S/H

vcn(H)(R). (29)

Observe that R ∈ S/H is cn(H)-complete because if R is a singleton then it is so by definition
and if |R| ≥ 2 then any i, j ∈ R are H-connected in R and thus R ∈ cn(H) = cm(cn(H)) by
Lemma 3, which with Lemma 5 implies that

vcn(H)(R) = v(R). (30)
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By (28), (29), and (30), we have (27), completing the proof.

This lemma implies that the Shapley value of rH and that of vcn(H) coincide. Therefore, by
Proposition 2 and Proposition 3, the d-Myerson value can be regarded as a refinement of the
Myerson value in the following sense.

Lemma 14 Let fM be the Myerson value and f be the d-Myerson value. Then,

fM (H) = f(cn(H)) for all H ∈ CS.

We shall supply an example illustrating the difference between the two allocation rules. Con-
sider again the example in section 3, i.e., H1,H2, and H3 specified in (9) with N = {1, 2, 3, 4},
and define a game

v = αu{1,2,3} + βu{2,3,4} + γu{1,2,3,4}.

Using the construction method (iii) of Lemma 12, we have vH1
= (α + β + γ)u{1,2,3,4}, vH2

=
αu{1,2,3} + (β + γ)u{1,2,3,4}, and vH

3
= v. The payoff vectors given by the d-Myerson value can

be found by calculating the Shapley value of these games, and using the formula (5), we have
them in the following table.

player 1 players 2 and 3 player 4
f(H1) (α + β + γ)/4 (α + β + γ)/4 (α + β + γ)/4
f(H2) α/3 + (β + γ)/4 α/3 + (β + γ)/4 (β + γ)/4
f(H3) α/3 + γ/4 (α + β)/3 + γ/4 β/3 + γ/4

If α > 0 then fi(H2) > fi(H1) for i ∈ {1, 2, 3} and f4(H2) < f4(H1). That is, addition of
a conference {1, 2, 3} to H1 decreases the payoff of player 4 and increases those of players in
{1, 2, 3} if the dividend of {1, 2, 3} is positive. On the other hand, if β > 0 then fi(H3) > fi(H2)
for i ∈ {2, 3, 4} and f1(H3) < f1(H2). That is, addition of another conference {2, 3, 4} to
H2 decreases the payoff of player 1 and increases those of players in {2, 3, 4} if the dividend of
{2, 3, 4} is positive. Note that the above differences of payoffs do not appear in the Myerson value
because cn(H1) = cn(H2) = cn(H3) = H3 and thus fM (H1) = fM (H2) = fM (H3) = f(H3) by
Lemma 14.

Let us conclude with a final remark on the comparison of the two allocation rules. In some
applications, it may make sense to require

∑
i∈S fi(H) = v(S) to hold for all S ∈ N/H. The

d-Myerson value, however, do not satisfy CE and thus
∑

i∈S fi(H) > v(S) is certainly possible
for S ∈ N/H which is not H-complete. Our suggestion to avoid this difficulty is simple: adopt
f(H∪ (N/H)) as the payoff vector for H instead of f(H). Since each S ∈ N/H is (H∪ (N/H))-
complete and S ∈ N/(H ∪ (N/H)), it holds that

∑
i∈S fi(H ∪ (N/H)) = v(S) for all S ∈ N/H

by CCE. We believe that this is not an ad hoc treatment because
∑

i∈S fi(H) = v(S) implies
that players in S can cooperate and thus it is natural to add S to H. Note that, for the Myerson
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value fM , it holds that fM (H ∪ (N/H)) = fM (H) for all H ∈ CS because N/H ⊆ cn(H) and
thus cn(H ∪ (N/H)) = cn(H). So, it is also of interest to compare fM (H) and f(H ∪ (N/H)).
In the above example, we have f(Hk ∪ (N/Hk)) = f(Hk) for each k because Hk = Hk ∪ (N/Hk)
holds.

6.3 Network games and d-restricted games

Let G be the collection of conference structures each conference of which contains exactly two
players:

G = {G ∈ CS | |L| = 2 for all L ∈ G}.

Each G ∈ G is regarded as a network because (N,G) is an undirected graph with a vertex set N

and an edge set G.
Jackson and Wolinsky (1996) called a function V : G → R a network game where V (G) is the

total wealth when the network G ∈ G is formed. They considered an allocation rule f : G → RN

given by the Shapley value of a game w satisfying w(S) = V (GS) for all S ∈ 2N . They called
this allocation rule the Myerson value for network games and gave a characterization similar to
that of Myerson (1977).

The following result shows that a special class of network games are represented in terms of
the d-restricted game vG .

Lemma 15 Let V : G → R be a network game with V (∅) = 0. Suppose that, for each G ∈ G, it
holds that

V (GS) − V (GS\{i}) = V (GS\{j}) − V (GS\{i,j}) if {i, j} ⊆ S and {i, j} 6∈ G. (31)

Then, there exists a game v such that

vG(S) = V (GS) for all S ∈ 2N and G ∈ G. (32)

Proof. Let v be a game such that

v(S) = V ({{i, j} | {i, j} ⊆ S}) for all S ∈ 2N . (33)

Fix G ∈ G. Let w be a game such that w(S) = V (GS). If S is G-complete, then GS =
{{i, j} | {i, j} ⊆ S} and thus w(S) = V ({{i, j} | {i, j} ⊆ S}) = v(S). If i, j ∈ S are not directly
G-connected in S, then {i, j} 6∈ G and δiw(S) = δiw(S\{j}) by (31). Thus w satisfies the
conditions (24) and (25). The equivalence of (i) and (iv) in Lemma 12 implies w = vG , which
completes the proof.

The condition (31) says that if players i and j contained in S are not linked in the network G
then the marginal contribution of i to V (GS) equals that to V (GS\{j}). The above lemma implies
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that if a network game V satisfies (31) for all G ∈ G then the Myerson value for V coincides with
the d-Myerson value of v give by (33). For example, consider a network game V defined by

V (G) =
∑
L∈G

wL for all G ∈ G

where wL ∈ R is a constant. It is easy to check that V satisfies (31) for all G ∈ G and that (32)
holds for a game v such that

v(S) =
∑
L⊆S

wL for all S ∈ 2N .

7 Concluding remarks

This paper has proposed and axiomatized the d-Myerson value as a refinement of the Myerson
value. In so doing, we have introduced the two new axioms, CCE and NCU, and the d-restricted
game; the axiomatization of the d-Myerson value is done by replacing the CE axiom in that of
the Myerson value with the CCE and NCU axioms, and the d-Myerson value is shown to coincide
with the Shapley value of the d-restricted game in place of the restricted game in the Myerson
value. As concluding remarks, we point out other possible applications of the CCE and NCU
axioms and the d-restricted game.

The position value (Meesen, 1988; Borm et al., 1992) and the Hamiache value (Hamiache,
1999) are allocation rules defined on the collection of networks G. Later, these allocation rules
are extended to those on the collection of conference structures CS (van den Nouweland et al.,
1992; Bilbao and López, 2006). Both of them also treat direct and indirect connections equally
because the position value is defined in terms of the restricted game and the Hamiache value is
axiomatized in terms of the CE axiom. So, it is natural to consider refinements of these allocation
rules respecting differences of direct and indirect connections, as we did for the Myerson value.
We speculate that the CCE and NCU axioms and the d-restricted game might be employed
instead of the CE axiom in the Hamiache value and the restricted game in the position value.
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