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Abstract

We examine a model of contracting where parties interact repeatedly and can contract
at any point in time, but writing enforceable contracts is costly. A contract can describe
contingencies and actions at a more or less detailed level, and the cost of writing a contract
is proportional to the amount of detail. In each period, parties can save on writing costs by
modifying the previous contract rather than drafting a whole new contract. Among other
things we find that, if the relationship is relatively durable and uncertainty is relatively
high, it is optimal to write a long-term (possibly contingent) contract; otherwise there is
ongoing contracting over time. When we allow for informal (self-enforcing) contracts, we
find that these tend to be used jointly with formal contracts. We characterize the optimal
mix of formal and informal contracts and examine how this changes with the underlying
parameters.
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1. Introduction

The costs of writing contracts have interesting implications for the structure of contracts in a
long-term relationship, as they generate trade-offs at (at least) two levels: the choice between
contingent contracts and spot contracts, and the choice between formal (externally enforced)
and informal (self-enforcing) contracts.! In this paper we develop a model that sheds light on

these trade-offs, and yields interesting predictions on the resulting contractual arrangements.

We consider a multi-task, principal-agent setting with verifiable contingencies and actions,
where parties interact repeatedly and can write contracts at any point in time (this includes
the possibility of spot contracting, meaning that contracts are written after observing the state
of nature and before actions are taken). A contract can describe contingencies and actions at
a more or less detailed level, and the cost of writing a contract is proportional (in a sense to
be made precise) to the amount of detail. In each period, parties can save on writing costs by

modifying the previous contract rather than drafting a whole new contract.

In the first part of the paper (section 2) we focus on the implications of writing costs for
the optimal structure of formal contracts, and in particular for the choice between contingent
and spot contracts. At the intuitive level, it is not obvious whether the presence of writing
costs should favor contingent or spot contracting: on the one hand, spot contracting avoids the
cost of describing contingencies; on the other hand, spot contracts must describe the agent’s
behavior repeatedly, and this may push in favor of a contingent contract. Formal analysis can

be useful — we believe — to go beyond this initial intuition.

Absent writing costs, the model has little predictive power, as there is a plethora of optimal
contracting plans (including a contingent contract, a sequence of spot contracts, and a host of
intermediate solutions). But with an arbitrarily small writing cost, the model yields a unique
optimum. In particular, the optimum is either (i) a contingent contract, or (ii) a noncontingent

contract that is modified every time the need arises. These are two alternative ways to make

'We will use interchangeably the expressions “formal” and “externally enforced” contract; likewise for “in-
formal” and “self-enforcing” contract. We refrain from using the terminology “explicit” vs. “implicit” contracts
— which is common in the literature — because contracts may be quite explicit even though they cannot be
enforced in court.



contractual obligations responsive to the changing environment. We show that a contingent
contract tends to be optimal when the relationship is relatively durable and uncertainty is

relatively high.

If writing costs are not small, the optimal contracting plan may be incomplete, in the sense
that some tasks are regulated by rigid rules or left to the agent’s discretion. Regardless of the
degree and type of contractual incompleteness, however, the result stated above generalizes, in
the following sense: if a long-term contract is defined as a contract that is written once and
for all, a long-term contract is optimal if the relationship is relatively durable and uncertainty
is relatively high. On the other hand, there is likely to be ongoing contracting over time if

uncertainty is low or the relationship is not very durable.

The general idea that transaction costs can contribute to explain the use of long-term
contracts has already been expressed in the literature at the informal level. For example, Hart
and Holmstrom (1987, p. 130) write: “if a relationship is repetitive, it may save on transaction
costs to decide in advance what actions each party should take rather than to negotiate a
succession of short term contracts.”? Our model provides a formal examination of this idea for

a particular type of transaction costs, namely the costs of writing detailed contracts.?

We emphasize that the predictions of our model would be radically different if writing costs
were modeled in a more conventional way, and in particular along the lines of Dye’s (1985a)
well-known model of costly contracting. For example, we show that, with writing costs a’ la

Dye, if the number of possible states is large enough a contingent contract is dominated by a

20f course there is another theoretical explanation for long-term contracts, which should be viewed as comple-
mentary to the transaction-cost explanation: the fact that long-term contracts provide long-term commitment.
Long-term commitment may be valuable to induce parties to make relationship-specific (long-term) investments,
to facilitate intertemporal smoothing or insurance, or to provide incentives to reveal private information. Pa-
pers that highlight these benefits of long-term contracts include Townsend (1982), Lambert (1983), Allen (1985),
Rogerson (1985), Harris and Holmstrom (1987), Crawford (1988), Malcomson and Spinnewyn (1988), Rey and
Salanie (1990), Fudenberg et al. (1990).

3Somewhat related to the present paper is Lipman (1997), who analyzes the implications of computation
costs for the tradeoff between long-term and short-term contracts. Lipman considers boundedly rational agents
who trade repeatedly and can learn the payoff implications of future contingencies only by paying a ‘computation
cost’. Relatively high computation costs lead to short-term contracts. Low computation costs may lead to long-
term contracts. We should also mention that there is a fairly large literature on complexity costs as a cause of
contractual incompleteness in a static setting. See for example Dye (1985a), Anderlini and Felli (1994, 1999),
Krasa and Williams (1999), MacLeod (2000) and Battigalli and Maggi (2000).



sequence of spot contracts.

Two more remarks are in order before we turn to the issue of formal vs. informal contracts.
As we mentioned previously, by “writing costs” we mean costs that are proportional to the
amount of detail in the contract. Another type of transaction costs that can explain a preference
for long-term contracts is fixed per-contract costs.* We notice, however, that the implications
of fixed contracting costs are very different from those of writing costs. For example, if in our
model we replaced our writing costs with a fixed contracting cost, it would always be optimal
to write a complete contingent contract (or no contract at all). Fixed contracting costs cannot
explain the occurrence of ongoing contracting over time, or of incomplete long-term contracts.
Moreover, as will soon become clear, fixed contracting costs cannot explain the simultaneous

use of formal and informal contracts.

The second remark concerns Maskin and Tirole’s (1999) well-known irrelevance result. They
argue, within a static setting, that the presence of unforeseen contingencies (or, by an exten-
sion of their argument, the costs of describing contingencies) does not imply inefficiencies in
contracting, provided that parties can design an appropriate message-based mechanism to be
played after contingencies are observed and before actions are taken. Since in our setting parties
have the option of observing the state before contracting, mechanisms a la Maskin-Tirole are
redundant. As a consequence, the costs of describing contingencies can cause inefficiencies in
contracting even if mechanisms a la Maskin-Tirole are available. Our analysis thus shows that

the Maskin-Tirole critique may lose relevance in a dynamic setting.

In the second part of the paper (section 3) we introduce the possibility of self-enforcing
contracts, i.e. contracts that are enforced by reputation mechanisms rather than by external
courts. The advantage of a self-enforcing contract is that it can be communicated informally,
rather than being written formally, because it need not be enforceable in court, and this saves
on writing costs. On the other hand, the absence of an external enforcement mechanism may
limit the effectiveness of a self-enforcing contract. Hence there is a trade-off between formal and
informal contracting. When we allow for both formal and informal contracting in the model, we

find that they tend to be used jointly, with some tasks regulated formally and others regulated

*There are a few papers in the macro/labor field where long-term contracts are motivated by the presence
of fixed per-contract costs. Examples of this literature are Gray (1976, 1978) and Dye (1985b).
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informally. In particular, low-cost tasks are regulated by informal contract, intermediate-cost
tasks are regulated by formal contract, and high-cost tasks are left to the agent’s discretion. The
presence of writing costs can thus contribute to explain the fact that long-term relationships

are often managed by a combination of formal and informal contracting.

The relative importance of formal versus informal contracting is captured by the ratio be-
tween the number of tasks regulated formally and the number of tasks regulated informally.
We find that this ratio need not decrease with the writing cost. Moreover, as the writing cost
approaches zero, the optimal contract need not be fully formal, and may even be fully informal.
We also find that the relative importance of formal contracting need not decrease with the dura-
bility of the relationship, even though a more durable relationship makes informal contracts

easier to sustain.

The interaction between formal and informal contracts is analyzed also in Baker et al. (1994)
and Pearce and Stacchetti (1998).° These papers propose a different — and in many respects
complementary — explanation for the combined use of the two types of contract. They consider
a repeated principal-agent model where parties can write a formal contract based on verifiable
signals of the agent’s action, and/or an informal contract based on unverifiable signals. Both
papers find that it may be optimal to offer a combination of a formal wage and an informal
‘bonus’. However, there are important differences between these models and ours, both in the
focus of the analysis and in the comparative-statics predictions. We will discuss these differences

at length in section 3.

2. A model of formal contracting

We start by modeling the language used to write contracts.

II° = {e1, ez, e5...} is a finite collection of primitive sentences, each of which describes an
elementary event concerning the external environment. For example, e;: “the passenger has a

moustache”, ey: “the passenger’s bag is red”.

SThere is also a vast literature on purely self-enforcing contracts. Bull (1987) and Mac Leod and Malcomson
(1989) are two prominent examples of this literature.



I1* = {ay, as, as, ..} is a finite collection of primitive sentences describing elementary actions
(behavioral events, or tasks), for example, a; : “check the passenger’s passport”, as : “search

the passenger’s bag”.

With a slight abuse of terminology, we will use the notation ey (resp. ay) to indicate both

an elementary event (resp. action) and the primitive sentence that describes it.

We assume that this language is the (only) common-knowledge language for the parties and

the courts. This ensures that there are no problems of ambiguous interpretation of the contract.

A state is a complete description of the exogenous environment, represented by a valuation
function s : II* — {0, 1}, where s(ex) = 1 means that primitive sentence ey is true at state s
and s(e;,) = 0 means that primitive sentence ey, is false at state s.° In other words, s(ey) is a
dummy variable that takes value one if elementary event ey occurs and zero otherwise, and a

state is a realization of the vector of dummy variables (s(e;), s(es), ....).

Similarly, a behavior is a complete description of all elementary actions, represented by
a valuation function b : I1* — {0, 1}, where b(ay) = 1 means that elementary action ay is

executed, and b(ay) = 0 that a;, is not executed.

To simplify the analysis we assume a very simple payoff structure. There is a one-to-one
correspondence between elementary tasks and elementary events. The principal wants task k
to be performed if and only if elementary event k£ occurs. In our airport example, the principal
wants the agent to check the passenger’s passport if and only if the passenger has a moustache,

and to search his bag if and only if the bag is red.

Principal and agent are risk neutral. The principal gets an incremental benefit of one from
“matching” e, with ax, while he gets zero incremental benefit if there is a “mismatch”. Formally,

the principal’s per-period utility is:

7(s,b,m) = Z[s(ek)b(ak) + (1 —s(ex))(1 —blax))] —m (2.1)

k=1

where m is the payment to the agent.

To simplify the exposition we describe the basic notation omitting time subscripts. We will introduce time
subscripts later in this section, when we describe the timing of the game.



The agent’s interests are always in conflict with the principal’s, in the sense that his preferred
actions are always opposite the principal’s preferred actions. Formally, the agent’s one-period
utility is:

N

U(s,bym)=m — Zék[s(ek)b(ak) + (1 — s(er))(1 —b(ag))], (0 < b < 1) (2.2)

k=1

The parameter 6, captures the disutility associated with task k for the agent. The agent’s
reservation utility is zero. Payoffs are common knowledge to the contracting parties, and the
state and the parties’ behavior are verifiable in court. Thus, there are no issues of moral hazard
or adverse selection. We assume that preferences and realized payoff levels are not verifiable in
court, and that the principal cannot “sell the activity” to the agent (i.e., the agent cannot be

made the recipient of the gross payoff ).

Next we define a contract and the costs of writing it. A contract is a pair (g, m) where

g = (7,)Y_, is a set of N clauses and m is a transfer from the principal to the agent (wage).®

Each clause 7, regulates a task. Given our simple matching structure between tasks and
elementary events, we can restrict our attention to four types of clause: (i) a contingent clause,
that constrains the agent to do ay if and only if e; occurs, Cy, : [ax < ex]; (ii) a noncontingent
positive clause, constraining the agent to do a; whatever happens, Ry, : [ax]; (iii) a noncontingent
negative clause, constraining the agent to do not a, whatever happens, Ry : [-ag]; (iv) the
empty clause, D, that imposes no constraint on the agent (note that since we include the
empty clause among the possible clauses, there is no loss of generality in assuming that the
number of clauses in the contract is N). For example, if N = 3, the set of clauses (Ry, D, Cj)
constrains the agent to do a; whatever happens and to do az if and only if elementary event e3
occurs, leaving the agent free with regard to task 2. We denote G the collection of all possible

sets of clauses (thus, for any contract (g,m), g € G).

If preferences were verifiable, the first-best outcome could trivially be achieved by a contract of the form
“The agent’s behavior b must maximize the sum of the parties’ utilities.” On the other hand, if realized payoff
levels were verifiable, the first-best outcome could be achieved by offering the agent a transfer that increases
one-for-one with the principal’s realized payoff level. And selling the activity to the agent would be equivalent
to specifying a contingent transfer as in the previous point.

81t can be shown that there is nothing to gain from making payments contingent on the state or on the
agent’s behavior, due to the assumptions of risk neutrality, verifiable actions and conflict of interests.



Describing a task or an elementary event is costly. To simplify, we assume that the cost of
describing a task and the cost of describing an elementary event are both equal to c. It follows
that writing a contingent clause C}, costs 2c¢, and writing a noncontingent clause (Rj or Ry)
costs c. We also assume that specifying the wage in the contract is costless, thus the cost of
writing a set of clauses g € G is Cost(g) = 2¢NY + cNj,, where N/, is the number of contingent
clauses and N7, is the number of noncontingent clauses. The writing cost is borne entirely by

the principal.”

Next we describe the timing of the game (and introduce time subscripts in the notation).
The parties interact for infinitely many periods and have common discount factor d € (0, 1).
The parameter d can also be interpreted as capturing the stability of the relationship.!® In
each period t = 1,2, ... the timing is the following: the state of nature s; € S is observed, then
the principal offers a contract (g;,m;) to the agent, where g; = (v.,)Y 1, Y& € {Chk, R, Ri, D}.
The principal pays the cost of drafting the contract (g;, m;). If the contract is accepted, the
principal makes the payment m; and then the agent acts, both players being constrained by

the contract.!! If the contract is rejected, the agent gets his reservation utility (zero).

In the Markovian equilibrium analyzed in this section, the wage m; will be set at the
minimum level that induces the agent to accept the proposed contract. Since the determination
of the wage is a trivial aspect of the analysis, we will focus on the set of clauses. With a slight

abuse of our terminology, from now on we will refer to a “contract” simply as its set of clauses.

If at time ¢ the principal wants to offer a different contract than the one at time ¢ — 1, he can
save substantial writing costs by proposing a modification of the previous contract, rather than
drafting a whole new contract. Contract modifications can take two forms: (i) amendments, that
is, permanent modifications of the contract; or (ii) exceptions, that is, temporary modifications

applied only for the current period. We allow the principal to modify the existing contract with

90n the “strategic” effects of transaction costs paid by both parties, see Anderlini and Felli (1997).

10The parameter d can be interpreted as the composition of two parameters, d = qd’, where ¢ is the probability
that the game will continue and d’ is the ‘true’ discount factor.

1 The assumptions that the principal pays before the agent acts, and that the principal cannot pay more than
what is specified in the contract, are not essential for the analysis of formal contracting. We will come back to
these issues in section 3 when we analyze self-enforcing contracts. Note also that nothing would change if we
allowed the principal to choose whether to write the contract before or after the state s; is observed, as there is
no gain from writing the contract before the state is observed.



any set of amendments and exceptions at any point in time.'?

To capture this idea, we distinguish between the effective contract (the contract actually
enforced at time ¢) and the default contract. The effective contract at ¢ is given by the default
contract at ¢ plus the exceptions at ¢, and the default contract at ¢ is given by the default
contract at t — 1 plus the amendments at ¢. The default contract will be the key state variable

of our problem, while the amendments and exceptions will be the control variables.
More formally, the default contract is a set of clauses
G+ (Vt)ren,
where 7., € {Ck, Ry, Ry, D}. The default contract at time ¢ is given by:
gt = f(f]t,l,gf‘) = ((:yk,tfl)keN\K{‘a (ak,t)keK{‘> 5

where ay,; € {Cy, Ry, Ry} is the amendment for task & and g = (Qk,t)kexp is the set of

amendments. For each task £, the default clause at ¢ = 0 is the empty clause: 7, o = D.
The effective contract at time t is given by:
gt = f@t;gtE) = <(%,t>keN\KtEa (5k,t)keKtE> )
where ey ; € {Cy, Ry, Ry} is the exception for task k and g7 = (ex.4)se k= is the set of exceptions.

The writing cost paid in period t is Cost(g') + Cost(gF).'?

2Implicit in this formulation is the assumption that the contract for time ¢t —1 can be used as default contract
for time t, but contracts from earlier dates cannot. For example, we do not allow contract g; to say “contract g:_o
applies with the following modifications...”. A more general model would allow for richer ‘recalling’ possibilities,
but we conjecture that, if there is a costs of recalling more remote contracts, the key insights of the analysis
would not change.

13We assumed that the language described at the outset is the only common-knowledge language. In principle,
the parties could construct a new language, for example by attaching a new primitive sentence to each state
and to each behavior, and write a contract with the new language. Note that the parties would have to attach a
vocabulary that translates the new language into the original one, in order for the courts to be able to interpret
the contract. If the relationship is one-shot, the new language cannot be more efficient than the original one,
because the cost of writing the vocabulary in the contract is at least as great as its benefits. In a repeated
relationship, however, this approach might in principle be efficient. (We thank Leonardo Felli and Luca Anderlini
for bringing this point to our attention.) A more general model would allow for this kind of recoding of the
language, but we conjecture that the main qualitative results would not be affected.



Note that we are not considering the possibility of multi-period contracts, but this is without
loss of generality. We could allow the contract at time t to specify wages or tasks for future

dates, but there would be no gains from doing so.!*

We assume that the stochastic process governing the external environment is a Markov
chain;'® the transition probabilities are denoted by ju(s;11]s;). We will first focus on the special
case of an i.i.d. process and then show how the results change with persistent shocks. To
streamline the exposition, we also assume that in the first period the state is (1,...,1), i.e.,

s1(ex) = 1 for all k. In the appendix we solve the model dropping this assumption.

In this section we focus on stationary Markov perfect equilibria, that is, subgame perfect
equilibria in which current decisions depend only on the state variable, i.e. the current state
of the environment and the default contract of the previous period [see Fudenberg and Tirole

(1991, Ch. 13)].

The game may have also subgame perfect equilibria that support some cooperation without
the aid of formal contracts. These are equilibria where current decisions depend on past behavior
(‘punishment’ strategies). We think of these equilibria as “self-enforcing contracts”. The reason
we ignore these equilibria in this section is to focus more sharply on the role of formal contracts,
and on the issue of long-term versus short-term contracts. We will consider self-enforcing

contracts in the next section.

Given the simple structure of the interaction, solving for the stationary Markov perfect
equilibria boils down to maximizing the expected discounted value of the surplus net of writing
costs. To state the problem formally, we need to introduce the policy function i : GXS — GxG,
or in more explicit notation, (g, g¥) = h(gi_1,s:). The policy function induces, at each t, a
random value for the surplus net of writing costs, which we denote NS? : St — R. The problem

can then be stated as

max £ [Z d“st] (2.3)
=1

H4This is because (i) there are no gains from long-term commitment, (ii) there are no fixed contracting costs,
and (iii) the contract of the previous period can be used as default contract for the current period.

15 A Markov chain is a Markovian process with one-period memory and stationary transition probabilities
(see, e.g., Gallager (1996, p. 103)).



An optimal contracting plan is a solution of problem (2.3).

2.1. Independent shocks

As a first step of the analysis, we consider the case in which elementary events are identically
and independently distributed across ¢t and k. In the next section we will consider the case of

serially correlated events.

Let us assume that, for every k =1,..., N, t=2,3,... and s;,s;_1 € 5,

1
plsilsi1) = p=r (1 — p)mRaded o p e (o)1) (2:4)

(recall that si(eg) = 1 for all k). The probability that an elementary event occurs is given by
p, that is, p = Pr{s;(ex) = 1} for all k£ and ¢t > 2. We can think of p as capturing the degree
of uncertainty in the environment: the higher p, the lower the uncertainty (notice that the

variance of dummy variable is decreasing in p).

Given our assumptions, we can derive the optimal contracting plan by looking separately

at each task k.19 It turns out that each task is optimally regulated in one of four ways:

1. A C} clause written at time ¢ = 1, with no subsequent modifications. We will refer to

this as a contingent rule, denoted by Cj.

2. A default clause Ry, followed by an exception every time s;(e;) = 0 (e, does not occur).

We will refer to this as a default rule cum exceptions, denoted DEy.

3. A default clause Ry with no subsequent modifications. We will refer to this as a rigid

rule, denoted Ry.
4. No clause at any t (discretion for task k), denoted by Dj,.

This is the right juncture to discuss the notion of contract incompleteness in this dynamic

setting. Contract incompleteness can take two basic forms: (a) rigidity, meaning that the

16The reader may wonder why we did not simplify the model by assuming that there is a single task. The
reason is that, when we allow for self-enforcing contracts, the problem will no longer be separable in the N
tasks, as incentive constraints will create interactions between tasks.

10



contractual obligations do not discriminate sufficiently between states, and (b) discretion, in
the sense that the contractual obligations do not completely specify the agent’s behavior. In
this setting, a simple measure of contractual rigidity is the number of tasks regulated by rigid

rules, and a measure of discretion is the number of tasks that are left unregulated.

Importantly, the notion of contract incompleteness must be understood in a dynamic per-
spective. For example, the presence of noncontingent clauses in a contract does not imply that
there is contractual rigidity, because the noncontingent clauses may be modified over time. In
particular, note that a default rule cum exceptions implements the first best outcome for task

k at all times, just as a contingent rule.

It is straightforward to derive the net incremental value of these four rules:

k'» Rule Incremental Net Value

Ck 11:6; —2c
1-6 1—dp)c
D&y T4 ( 1—5) s
R 1— 06, + % —C
Dy, 0
Table 1

In the next proposition, N¢, Npe, Nz and Np denote respectively the numbers of tasks regulated
by rules 1, 2, 3 and 4 above. We refer to a complete contingent contract as a contracting
plan where each task is handled by a contingent rule, and to a complete default contract cum
exceptions as a contracting plan where each task is handled by a default rule cum exceptions.
(Also, when we use the expression “increasing” or “decreasing” without further specification

we mean it in the weak sense.)

Proposition 1. (i) If ¢ is smaller than some critical level, the optimum is either a complete
contingent contract or a complete default contract cum exceptions. The former is preferred if
and only if d is higher than the critical level d(p) = ﬁ.

(ii) In general, a set of low-6y, tasks is regulated entirely by Cy rules or entirely by DEy rules;
a set of intermediate-0, tasks is regulated by R, rules; and a set of high-0y, tasks is left to the
agent’s discretion (each of these sets may be empty). If d > d(p), the contract is written once

and for all at t = 1.

11



(iii) N¢ is increasing in d; Npg and Np are decreasing in d. If d is higher than some critical
level, a complete contingent contract is optimal.

(iv) N¢ and Np are decreasing in p; Npg and Ng are increasing in p.

Absent writing costs, the model has little predictive power, because there is a vast mul-
tiplicity of optimal contracting plans. Any contracting plan that implements the first best is
optimal. These include a complete long-term contingent contract, a sequence of complete spot
contracts, and a whole host of intermediate solutions. However, an arbitrarily small writing
cost is sufficient to pin down a unique optimum. Point (i) states that, if the writing cost is
small, the optimum is either a complete contingent contract or a complete default contract cum
exceptions. These are two ways to implement the first best outcome for all states. The former
tends to be optimal when the relationship is more durable (d is higher) and when there is more
uncertainty in the environment (p is lower).!” On the other hand, when uncertainty is low or
the relationship is not very durable, the first best can be achieved at lower cost by writing

default rules and occasionally negotiating exceptions when low-probability events occur.

If ¢ is higher, the optimal contracting plan may be incomplete. In particular, high-cost
tasks are left to the agent’s discretion and intermediate-cost tasks are regulated by rigid rules.
Low-cost tasks, on the other hand, are regulated by contingent rules or by default rules cum
exceptions. Since both of these rules achieve the first best outcome, the more efficient is the
one that minimizes (the present expected value of) writing costs, hence their comparison is
independent of ¢;. This is why this group of tasks is regulated entirely by contingent rules or

entirely by default rules cum exceptions.

If the contract is written once and for all at ¢ = 1 (i.e. it is not modified over time), we
interpret it as a long-term contract. Literally interpreted, this is a one-period contract that is
renewed every period. However, an equivalent strategy would be to write a contract with no
expiration date at ¢ = 1; moreover, a small fixed cost of contracting would make such a contract
strictly optimal. Therefore we feel justified in viewing this as a long-term contract. From table 1

it follows immediately that, if d > d(p), default-cum-exceptions rules are dominated, hence the

~ "Point (i) implies that a contingent contract is optimal if p is lower than the critical level d~!(d), where
d~'(-) is the inverse of d(-).

12



contract is never modified over time. Our model thus offers a simple (and potentially testable)
prediction: a long-term contract tends to be optimal if the relationship is relatively durable or
uncertainty is relatively high. Ongoing contracting may be optimal only if uncertainty is low

or the relationship is not very stable.!8

Point (iii) and (iv) look at how the optimal contract is affected by changes in d and p.
If the relationship is more stable, the optimal contract tends to be more contingent, and if
it is sufficiently stable the model predicts a complete contingent contract. If there is more
uncertainty, noncontingent rules (rigid and default-cum-exceptions) are less attractive. This in

turn makes the other two options, contingent rules and discretion, more attractive.

2.2. Persistent shocks

Thus far we have assumed that elementary events are serially independent. In this subsection
we examine how results change when exogenous shocks are persistent. We will find that, when
shocks are persistent, it may be optimal to use amendments, rather than exceptions, as a way

to adapt the default rules to changing events.

We assume that, for every t = 2,3,... and s;, 5,1 € S, the transition probabilities are
described by:

1 1 1
,U'(St|8t—1) = (5 + p)Zk I[st(ek):stfl(ek)](st)(§ _ p)[N—Zk I[&:(%Q)ZSt,l(e}c)](St)]7 pE (O’ 5) (25)

where (e, )= () (S) is an indicator function that takes value one if s(ex) = s'(ex) and zero
otherwise. (We do not need to assume anything about p(s;).) In words, for each t and k, the

probability that s;(ey) is equal to s,_(eg) is (3 + p), and the probability that s(e) is different

1_

from s;_;(ex) is (5

p), and there is “cross-sectional independence”. The parameter p € (0, %)

captures the persistence of shocks in the external environment.

Note that, unlike in the previous section, we are assuming that the elementary events e

and —e; are symmetric. This allows us to focus more sharply on the role of persistence.

18The reason we did not state that a long-term contract is optimal if and only if d > d(p) is the following. It

is direct to verify that d > d(p) is a necessary and sufficient condition for a long-term contract to be optimal as
long as there is at least one task for which the gross surplus exceeds c. If however this is not the case, then a

long-term contract may be optimal even if d < d(p), because in this case a DE}, rule is dominated by a Ry, rule.
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It turns out that the qualitative results are very similar to those of section 2.1, with the
following modification. A default rule cum exceptions can no longer be optimal, and there is
a new candidate optimal rule: a default rule cum amendments. This is a default clause that
is amended every time the realization of s(e) changes. The fact that amendments are more
efficient than exceptions, as a way to adapt default rules to the changing environment, is an
intuitive consequence of persistence.!” Note that, like contingent rules and default rules cum

exceptions, default rules cum amendments implement the first best at all times.

The following proposition highlights the changes in results relative to the previous section.

Proposition 2. If u(s|s;—1) is described by (2.5), Proposition 1 still holds, provided “excep-

tions” is replaced with “amendments” and p is replaced with (% + p).

This proposition suggests that serial correlation in the states has similar implications as
‘intrinsic’ asymmetries among states (which we considered in the previous section), with the
difference that amendments are now preferred to exceptions. The general insight is that low
uncertainty about the future state makes contract modifications (amendments or exceptions)
preferable to contingent clauses. When low uncertainty is due to persistence, amendments are
preferred. When it is due to intrinsic asymmetries between likely and unlikely states, exceptions

are preferred.

Note that a long-term contract is optimal if d > d(3+p), where d(-) is an increasing function.
Again, we can interpret this result as saying that a long-term contract tends to be optimal when

the relationship is relatively durable and uncertainty is relatively high.

A more general model would allow for intrinsically asymmetric states and persistent shocks.
This would be substantially more complicated to analyze, but we conjecture that the main
qualitative insights would not change, except that the optimal contracting plan would probably

involve the use of both exceptions and amendments.

Y Exceptions and amendments are equivalent in the knife-edge case p = 0.
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2.3. Language matters

In this section we argue that the predictions of the model depend heavily on our language-based
approach, and could differ radically if writing costs were modeled in a different way. To make
this point, we consider a more ‘traditional’ specification of writing costs, similar in spirit to

Dye (1985a).

Let {s',...,s™} be the set of states and {b', ..., b} the set of behaviors, and assign indices
so that it is efficient to do &’ if and only if the state is s/, for all j € M. Now assume that the
cost of describing a state and the cost of describing a behavior are both equal to c. Suppose ¢
is small, so that it is optimal to implement the first best mapping. Keep all other assumptions

of our model unchanged.

In this version of the model, if the number of states M is sufficiently large, a sequence of
spot contracts is optimal, and in particular it dominates a contingent contract. To see this,
note that the cost of a complete contingent contract is 2cM, while the discounted cost of a
complete sequence of spot contracts does not exceed %;. The intuition is that spot contracting
(i) avoids the costs of describing states, and (ii) requires describing a (weakly) smaller number

of behaviors than a contingent contract.

Thus, this alternative specification of writing costs implies that spot contracting is optimal,
in stark contrast with our model. This should clarify our statement that the nature of language

matters greatly for the predictions of the theory.

2.4. The Maskin-Tirole argument

Maskin and Tirole (1999) have argued that the presence of unforeseen contingencies (or, by
a straightforward extension of their argument, the costs of describing contingencies) does not
imply inefficiencies in contracting, provided that parties can design an appropriate message-
based mechanism to be played after contingencies are observed and before actions are taken.
Since in our setting parties are allowed to contract in ‘spot’ fashion, i.e. after contingencies are

observed and before actions are taken, mechanisms & la Maskin-Tirole are redundant, hence
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none of our conclusions changes if such mechanisms are available. In particular, it remains true
that the costs of describing contingencies cause inefficiencies in contracting, which is in contrast
with Maskin and Tirole’s argument. The reason for this apparent divergence in conclusions is
that we allow for a repetitive relationship and for costs of describing behavior, while Maskin

and Tirole do not.

Recall that in our model, under some parameter values, parties choose to write a contingent
contract and incur the corresponding costs of describing contingencies, even if they have the
option of writing spot contracts. Suppose the cost of describing an elementary event is distinct
from the cost of describing an elementary task, and consider increasing the former, keeping the
latter constant. Can this increase inefficiency? The answer is yes. As we have seen, there is a
parameter region in which it is optimal to write contingent clauses. This is a fortiori true in
the extended parameter space where the cost of describing contingencies is distinct from the
cost of describing behavior. Therefore, starting from this parameter region, an increase in the

costs of describing contingencies decreases the net surplus.

3. Formal and informal contracting

In reality, long-term relationships are often managed by informal (self-enforcing) contracts. It
also happens frequently that a relationship is governed by a combination of informal and formal
contracts. In this section we examine how the predictions of the model change when parties

have the option of using informal as well as formal contracts.

Informal contracts have an advantage over formal contracts, namely that they can be based
on informal communication (i.e. communication for the only purpose of reciprocal understand-
ing), as opposed to formal communication (i.e. communication for the purpose of making the
contract enforceable in court). Arguably, the cost of the latter is higher than the cost of the
former, because for the contract to be enforced by courts it must be written according to the
commonly accepted legal standards, which may be quite cumbersome to meet. In particular,
it is not sufficient that the language used in the formal contract be common knowledge to the

contracting parties; it has to be common knowledge to the parties and the courts, and this may
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require effort and skills (or lawyers).2

The shortcoming of informal contracts, on the other hand, is the absence of an external
enforcement mechanism. Since an informal contract must satisfy self-enforcement constraints,
it may have to be distorted away from the first best. In what follows we will examine more

closely this trade-off between formal and informal contracting.

3.1. Efficient equilibria

We assume that there is no cost associated with informal contracts. We could allow for a cost
of informal contracts, but this would change the main results in an obvious direction, tilting
the balance in favor of formal contracts. Also, what matters most for the trade-off between
formal and informal contracts is the differential cost of formal versus informal norms, and this

is captured in our model by the parameter c.

Consider the game of section 2.1 (where we assume i.i.d. shocks). The way we allow for
informal contracts is by looking at the set of subgame perfect equilibria, rather than at the
Markov perfect equilibrium. In particular, following a common approach in the literature on

self-enforcing contracts, we will focus on constrained Pareto-efficient subgame perfect equilibria.

In a subgame perfect equilibrium, players’ actions may be regulated by formal or informal
norms. The set of formal norms at a given point in time is given by the formal contract that
is in effect at that time. Actions that are not regulated by formal norms may be regulated
by informal norms, which are enforced by the threat of reverting to a worse equilibrium. Our
objective is to understand under what conditions it is efficient to use both formal and informal
norms, and if so, which tasks tend to be regulated by one or the other, and how the underlying

parameters affect the optimal mix of norms.

In order to simplify the analysis we assume that players are patient enough to make maxmin
punishments credible. More specifically, we assume that d > d(p), where d(p) is the critical
level defined in Proposition 1. This restriction ensures the existence of a credible punishment

strategy that keeps the principal at his maxmin, as the lemma below states (we already know

208ee footnote 1 for a discussion of our terminology of formal vs. informal communication.
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that the Markov perfect equilibrium keeps the agent at his maxmin). At the end of this section

we will discuss how results are likely to change when this condition is not satisfied.

Lemma 1. Assume d > E(p). Then, there is a strategy pair o that keeps the continuation
payoff of the principal at his maxmin (zero) in every subgame starting with a move by the

principal.

The punishment strategies that we construct to prove the lemma have roughly the following
structure: after a deviation, the informal contract is abandoned and parties revert to the
optimal formal contract, and all the surplus from this contract is given to the player that has

not deviated. In Appendix we describe this punishment strategy in greater detail.

Having pinned down the off-equilibrium strategies, we can now turn to the equilibrium path
of the game. We will restrict our attention to simple equilibrium paths where each task is either
regulated according to one of the rules presented in Section 2.1, or is regulated informally with
the agent freely choosing the efficient action in every period. This restriction simplifies the

analysis and makes it more easily comparable to the analysis of the Markovian equilibrium.?!

More specifically, for each task k& we consider four possibilities: (i) a formal contingent rule,
meaning that a Cy clause is written at ¢ = 1 and is never modified; (ii) a formal rigid rule,
meaning that a Ry clause is written at ¢ = 1 and is never modified; (iii) discretion, meaning
that the task is not regulated by the formal contract and the agent takes the inefficient action
in every period; (iv) an informal contingent rule, meaning that the task is not regulated by the
formal contract but the agent takes the efficient action in every period. It can be shown that
there is no need to consider informal rigid rules, because they would yield lower surplus without
relaxing the incentive constraints. Also, given the assumption d > d(p), we can ignore formal
default-cum-exceptions rules, as they are dominated by formal contingent rules (cf. Proposition
1).

2I'We conjecture that there is no loss of generality in this restriction, in the sense that every equilibrium
path is either payoff equivalent or Pareto dominated by a simple equilibrium path. We are able to prove this
conjecture “by brute force” in the case of two tasks. But we do not have a complete proof for the general
case. The problem is that the incentive constraints yield interactions among tasks, and this makes the general
analysis very complex.
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Given our restriction on the equilibrium path, we can focus on subgame perfect equilibria of
the following form: In each period ¢, the principal offers a formal contract (g, m;) — where g is
the set of formal (rigid or contingent) clauses and m; is the transfer®? — and the agent accepts.
The formal clauses are never modified over time, so the principal pays the associated writing
costs only in the first period. For a (possibly empty) subset of tasks not regulated by the formal
contract, the agent takes the efficient action in every period (informal contingent rules). For
the remaining tasks, the agent takes the inefficient action in every period (discretion). As soon
as the principal deviates, he is punished according to the strategy pair o of the lemma above.

As soon as the agent deviates, he is punished with the Markov perfect equilibrium strategies.

To summarize, the equilibrium path is determined by a wage profile (m,)2,, where m, :
S — R,* and a partition { K/, Ko, Kg, Kp} of the set of tasks, where K}, K¢ and Ky denote
respectively the sets of tasks regulated by informal contingent, formal contingent and formal

rigid rule, and K, is the set of discretionary tasks.

We can characterize the constrained Pareto-efficient equilibria within this set as the ones
that maximize the net present value of the surplus subject to the constraint that players have no
incentive to deviate from the equilibrium actions. Formally, let M, = > > d""E(m,) denote
the expected present value of wages from period ¢ onward (since states are i.i.d., there is no
need to distinguish between conditional and unconditional expectation of the wage in period
t). We look for a solution to the following problem (recall that we are assuming p,(1,...,1) =1,
while p, is given by (2.4) for t > 1):

max > (1=6)+ Y [=bk—2c(1=d)]+ Y [(1—d+dp)(1—6;)—c(1-d)] (P)

K Ko, Kr,(mi)f2,

keKL keKc k€EKp
subject to
d 1
Dbk dMypy—— | Y et Y pok |, V=1, (ICY)
keK], keKLUKc keKr

22Given the assumed rules of the game, the principal is not allowed to pay informal “bonuses” (he must pay
the exact amount specified in the formal contract). However this is without loss of generality; see the discussion
at the end of this section.

23Note that we allow the wage in period ¢ to depend on the current state s;, thus m, is a random variable
(there is no need to consider wage processes with longer memory). It should be clear that, even if the wage is
state-dependent, it is not written as a contingent wage in the formal contract, but it is written period by period
after observing s, so it involves no writing costs.
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d

my(s)+dMy1— Z Op— Z s(ek)ék—m Z o + Z por | >0, Y(t,s):p(s) >0,

keKLUKc keKg keKLUKc kCcKg
(IC%)
d
Z 1—|—Zs(ek)+m Z 1+Zp —my(s) —dM1 >0, Vse S, Vt>2
keKLUKc keKg keKLUKc keKr
(ICp)
d

Zl—l— Z(l—QC)-I—Z(l—C)-FTd Z 1+Zp —ml—dMQZO (PCP)

keKl, keKc keKg keKLUK¢ kKR

Inequality (ICY) ensures that the agent has no incentive to shirk. Inequality (ICp) says
that the principal must have an incentive to offer the equilibrium contract in every state from
period ¢t = 2 on. If all transfers go from the principal to the agent (m(s) > 0 for all ¢ and
s), incentive constraints (ICY) and (ICp) are sufficient for an equilibrium. But if some transfer
goes from the agent to the principal (my(s) < 0 for some ¢ and s), we must ensure that the
agent has an incentive to make this payment. Inequality (IC%) incorporates such condition.
Note that, if m;(s) > 0 for all ¢ and s, inequality (IC%) is implied by (ICY). Finally, (PCp) is

the “participation constraint” for the principal.

By inspection of the incentive constraints, it is clear that the frontier of attainable SPE
payoffs is linear (with slope -45°) in the relevant range, because we can change the distribution
of the surplus by varying the first-period wage without affecting the attainable surplus (as long
as each player gets at least his maxmin). This ensures that the constrained Pareto-efficient

equilibria are indeed given by the solutions to problem (P).

The following lemma simplifies the analysis of problem (P):

Lemma 2. (K}, K¢, Kg) is part of some solution of problem (P) if and only if it is a solution

of the following auxiliary problem:

max Y (1=6)+ > [1—=8—2c(1—d)]+ > [(1—d+dp)(1—6)—c(l—d)

KL KoK
e ® ekl keKe keEKp

subject to

Zékg%d > (=8 + D p(l—6) (IC)

keK] keKLUKc keKg
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The auxiliary problem stated in the above lemma is derived from the original problem (P)
by reducing all the constraints to the single constraint (IC). The left hand side of (IC) is the
gain from cheating on the informal rules, while the right hand side of (IC) is the discounted net
present value of the surplus. Intuitively, (IC) would be the incentive constraint for the agent in
any period t if — in equilibrium — he were to get all the surplus in the following periods. Clearly,
this minimizes the agent’s incentive to shirk. Therefore, (K, Ko, Kg) cannot be part of an
equilibrium if (IC) is not satisfied. Conversely, if (K%, K¢, Kg) solves the auxiliary problem,
it can be implemented by (for example) an equilibrium that gives all the surplus to the agent
from period ¢t = 2 on and sets the first-period transfer m; so that both principal and agent get

a nonnegative share of the net present value of the surplus.

The auxiliary problem may admit multiple solutions, for the following reason. For example,
suppose that, at a solution of the problem, task 1 is regulated with an informal rule and task
2 with a formal contingent rule. Now modify the contract by regulating task 1 with a formal
contingent rule and task 2 with an informal rule. Since informal and formal contingent rules
yield the same surplus gross of writing costs, this does not change the value of the objective
function and it may well be the case that the (IC) constraint is still satisfied, in which case
the modified contract is also optimal. Such indeterminacy prevents clean comparative statics.
Therefore we use the following tie-breaking rule: if two choices yield the same present value of
net surplus, we assign a preference to the one that implies more slack in the (IC) constraint.

We will call (*)-efficient a solution of problem (P) that satisfies our selection criterion.

Let F' denote the ratio of tasks regulated formally to the total number of tasks regulated
informally and formally. This is a measure of the importance of formal contracting relative
to informal contracting. The next proposition characterizes the (*)-efficient equilibria and

examines the impact of the key exogenous parameters on F.

Proposition 3. Assume d > d(p). Then, at a (*)-efficient equilibrium:

(i) If ¢ is smaller than some critical level, a set of low-0y, tasks is regulated by contingent informal
rules and the complementary set of high-6;, tasks is regulated by contingent formal rules.

(ii) In general, there exist three threshold values, &' < 8" < §", such that tasks with 6, < &'

are regulated by contingent informal rules, tasks with §' < 6, < 8" are regulated by contingent
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formal rules, tasks with 6" < 6, < 8" are regulated by rigid formal rules, and tasks with 6, > 6"
are left to the agent’s discretion.

(iii) If ¢ is sufficiently high, then no task is regulated formally. However, F' need not be
decreasing in c. Moreover, as ¢ approaches zero F' need not approach one.

(iv) If d is sufficiently close to one, then F' = 0. However, F' need not be decreasing in d.

Part (i) focuses on the case in which the writing cost is small. In this case it is optimal to
implement the first best, and in particular, each task is regulated either by a formal contingent
rule or by an informal contingent rule. It turns out that low-cost tasks are regulated informally
and high-cost tasks are regulated formally. The intuition is as follows. Consider two tasks
characterized by different levels of 65, and suppose that one task must be regulated formally
and the other informally. Which one will be handled informally? The increase in surplus is the
same independently of which task is chosen, but the low-6; task implies a lower incentive to

cheat, hence it is better to regulate this task informally.

If ¢ is higher, it may not be optimal to implement the first best. In particular, as part (ii)
states, low-cost tasks are regulated informally, intermediate-cost tasks are regulated formally,
and high-cost tasks are left to the agent’s discretion. Within the group of tasks regulated
formally, lower-0; tasks are handled by contingent rules and higher-¢, tasks by rigid rules.

Not only are formal and informal norms used jointly, but they are complementary, in the
sense that they increase each other’s value. This is because increasing the number of tasks
regulated formally increases the surplus from the relationship, hence it helps relax the incentive

constraints of both players, thus making it easier to regulate more tasks informally.?!

Part (iii) focuses on the impact of changes in ¢ on the relative importance of formal contract-
ing (F'). Intuitively, a reduction in ¢ should increase F'. However this intuition is not entirely
correct: it is possible that a reduction in c¢ results in a lower F. To explain this possibility,
consider a small decrease in c. This may have the effect of changing a rigid formal clause into
a contingent formal clause. The resulting increase in the available surplus relaxes the incentive

constraints, making it possible to regulate informally an additional task, in which case the total

24This complementarity is of a similar nature as the one that arises in Baker et al. (1994). But see the next
subsection for important differences with respect to that paper.
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number of formal clauses does not change and the number of informal clauses increases.?”

The other point to note about the impact of ¢ is that, as this parameter approaches zero, it
may not be optimal to write a fully formal contract. In fact, as ¢ approaches zero it may even
be optimal to regulate all tasks informally. This is certainly the case if d is sufficiently close to
one, because in this case the incentive constraints are not binding. We will come back to this

point in the next section, where we relate our results to those in Baker et al (1994).

Part (iv) looks at the effect of changes in d. If d is sufficiently high, it is possible to
support a complete informal contract with a subgame perfect equilibrium (the threshold is d* =
% Z]kvzl k). Intuition might suggest that an increase in d should favor informal contracting,
since players discount the future less heavily, and this relaxes the incentive constraints. Things
however are more subtle, because there is another effect that runs in the opposite direction. We
have seen that, in the parameter region under consideration, it is optimal to write the contract
once and for all at ¢ = 1. This in turn implies that the incidence of writing costs decreases with

d, and this pushes in favor of formal contracting. The net effect can go either way.

Next we discuss the role of the parameter restriction d > E(p), which ensures that the
minimum equilibrium payoff is zero for each player. The condition that d is relatively high is
essential for Lemma 1. Consider the extreme case of d equal to zero. Then there is a unique
subgame perfect equilibrium in which the principal offers a formal contract and makes a positive
profit in every period. At any rate, even though this condition is needed for the lemma, we
suspect it is not essential for our qualitative insights. If the condition is not satisfied, it may
not be possible to keep the principal at his maxmin payoff in the punishment phase, in which
case the principal’s incentive constraints will be more stringent, and this is likely to result in
fewer tasks being regulated informally. But proposition 3 is still likely to hold, with the only

amendment that default-cum-exceptions rules may be preferred to contingent rules.

Before concluding the section, we want to discuss our assumptions about timing, the possi-
bility to pay “bonuses” (i.e. payments in excess of what is specified by the agreed-upon formal

contract) and the possibility to sign multi-period contracts.

25There is another reason why F may increase with c. It is possible that an increase in ¢ leads to decrease in
the number of both formal and informal rules, and that this yields a higher ratio F.
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According to the rules of the game, the principal pays the agent before he acts and the
payment is exactly the one specified by the offered contract (if accepted). It is clear that each
of these assumptions is, by itself, without loss of generality given the other. If bonuses are not
allowed, it does not matter exactly when the payment m occurs, because the principal has to
pay m independently of whether the agent has shirked on the informally regulated tasks or
not. On the other hand, if any payment has to be made before the agent acts, bonuses are
redundant, because the best incentive to keep the agent from shirking is still to hold him down
to his maxmin from period ¢ + 1 if he shirks in period ¢t. We now argue that even the joint
assumption about timing and bonunes is without loss of generality. Suppose that the principal
is allowed to pay an informal bonus immediately after the agent acts. In this case, the agent has
a stronger incentive not to shirk, because shirking will prevent him from enjoying an immediate
reward. On the other hand, with the modified assumption, the principal has an incentive to
renege on the informally promised bonus, whereas with our current assumption he can only
omit to offer the formal contract specified by the equilibrium. It can be shown that these two

effects cancel out.

Similarly, it can be shown that there is no gain from committing to future wages or actions
in the current formal contract. The intuitive reason is that this subtracts from the players’
ability to punish each other in case of cheating. For example, if the principal commits to a
permanent stream of wages in the current contract, he loses the ability to terminate payments

in case the agent cheats.

3.2. Relationship to Baker et al. (1994) and Pearce and Stacchetti (1998)

Here we discuss briefly the analogies and differences between the model analyzed in the previ-
ous section and the two above-mentioned papers. In those papers, as in ours, a combination of
formal and informal contracting may be optimal, and the two forms of contracting may be com-
plementary, since the presence of a formal contract may relax the relevant incentive constraints.

However, this is where the analogy stops.

Baker et al. (1994) and Pearce and Stacchetti (1998) provide an explanation for the com-

bined use of formal and informal payments (wages and bonuses), whereas our model explains
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why it may be efficient to regulate some tasks formally and some others informally (note that
in our model there is no need for bonuses). Perhaps more importantly, the rationale for mixing
formal and informal contracting is very different. In those models, formal and informal con-
tracting are used together because some signals of the agent’s action are verifiable and some are
not. In our model, the combination of formal and informal contracting is not due to differences
in verifiability or writing costs across tasks; rather, it is due to the interaction between writing

costs (which are symmetric across tasks) and self-enforcement constraints.?®

Our model also yields different predictions concerning the interplay between formal and
informal contracting. One key result in Baker et al. (1994) is that the availability of formal
contracts may undermine informal contracts. In particular, if the verifiable signal is sufficiently
precise — or in other words, if the imperfections in formal contracting are sufficiently small
— an informal contract cannot be sustained. Therefore, a broad prediction of their model is
that, if imperfections in formal contracting decrease over time, there comes a point at which
informal contracting disappears. In our model, if formal contracting is close to perfect (i.e. if ¢
is close to zero), the optimum typically involves both formal and informal contracting, possibly
even a fully informal contract. Thus, our analysis suggests that informal contracting need not

disappear as the formal-contracting system becomes more efficient.

The reason for this divergence in results lies in the punishment strategy. Baker et al. assume
that, if a player cheats, parties revert to the optimal formal contract, with all the surplus from
this contract accruing to the principal. This implies that, if formal contracting is close to perfect,
it completely fails to deter the principal from cheating. However, in general this is not the most
severe credible punishment strategy. Our approach, on the other hand, is to characterize the
worst credible punishment strategies, which we are able to do under the parameter restriction
d > d(p). In this parameter region, each player can be punished with his maxmin payoff, hence

changes in ¢ do not affect the severity of the punishment.

Finally, our model yields different predictions on the effect of changes in the discount factor
d. In Baker et al., an increase in d always favors informal contracting. In our model, as

we remarked earlier, the opposite may happen. This is due to the different nature of the

26The discussion in the remainder of this section applies only to Baker et al. (1994).
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contractual imperfection. In Baker et al., the contractual imperfection (non-verifiability of
signals) is exogenous, and is present in each period. In our model, the contractual imperfection
(writing costs) is endogenous, and need not be incurred in every period. In fact, in the parameter
region d > d(p) it is optimal to incur the writing costs only in the first period, hence the dynamic

implications of the two kinds of contractual imperfections are very different.

4. Conclusion

Thus far, we have implicitly assumed away an alternative mode of governance that could avoid
the costs of writing detailed contracts, namely giving authority to the principal. If the principal
could instruct the agent on what actions to take in each period, there would be no need to specify
contingencies or actions in a contract. In this concluding section we discuss how results would

change if we allowed for authority as a governance mode.

As a premise, it is useful to distinguish between formal and informal authority. We speak
of formal authority when the principal’s authority is specified in the formal contract, and the
agent can be punished by courts for disobeying the principal. We speak of informal authority

when the principal’s orders are not enforced by courts, but by reputation mechanisms.

Let us focus on formal authority first. It is critical to note that formal authority is enforce-
able only if two conditions are met: (i) the principal can send verifiable messages to the agent;
this requires that messages be written, or at least recorded; and (ii) messages must be expressed
in a language understood by the courts. In other words, messages must be formal. For this
reason, even if a system of formal messages is feasible, it is not clear that its costs would be
significantly lower than a system of formal contracts. This might also explain why we rarely

observe pure formal-authority relationships in reality.

Informal authority is a more common mode of governance in real organizations. In our
model, however, there is no role for such an arrangement, due to the assumption of symmet-
ric information. Given that the principal and the agent have the same information, informal
authority cannot improve on an informal contract as we defined it, because in the latter ar-

rangement the agent knows what actions to take under any contingency, hence there is no need
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for further instructions from the principal. A role for informal authority would probably arise
if the principal had private information. An extension of the model in this direction is left for

future research.
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5. Appendix

Proof of Proposition 1

Here we drop the assumption that s;(ex) = 1 for all £ with certainty. Proposition 1 as

stated in the text is still valid, provided we redefine two expressions:

By default rule cum exceptions, here we mean the following: The first period in which e
occurs, say t', clause Ry is introduced in the default contract, and subsequently the exception
Ry, is applied every —e;, occurs. If s1(ex) = 0, clause Ry, is introduced in the default contract,

and replaced by Ry at t'.

By rigid rule, here we mean any plan that converges to a steady state where there is a
default clause Rj, or R, with no modifications. We will see that there are several plans that fall

in this category and can be optimal under some parameters.

We can assume without loss of generality that the principal chooses at the beginning of each
period ¢t how he will react to the exogenous shock s; (his optimally chosen reaction function

yields ex post optimal decisions).

We can therefore analyze the resulting dynamic programming problem with restricted state
space (G, where the principal decides at the beginning of each period ¢ which modifications of
the default contract g;_1 he will offer as a function of the external state s; (yet to be observed).
By the additive separability of payoffs we will obtain a value function v : G — R where

N

0 (Ge1) =) o)

k=1

We now derive each component v, (k € N) of the value function. For each possible 7, ,_;, we

can restrict our attention to the following candidate one-period decision rules:2”

(i) Cont(k): include in the default contract a contingent clause independently of the real-

ization s;.

2TNote that we can ignore the possibility of simply removing a clause, i.e. replacing it with D. This is due
to our assumptions about the payoff structure: in this model having a non-empty clause cannot be worse than
having an empty clause.
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(ii) Amend(k): include in the default contract clause Ry, if e, occurs and Ry, otherwise.

(iii) Amend(k,+): include in the default contract clause Ry if e occurs and do nothing

otherwise.

(iii’) Amend(k, —): include in the default contract clause Ry if —e; occurs and do nothing

otherwise.
(iv) Ezcept(k,—): apply the exception Ry, if =e; occurs and do nothing otherwise.
(iv’) Ezcept(k,+): apply the exception Ry if e, occurs and do nothing otherwise.

(v) Inaction(k): do not introduce any modification concerning aspect k, independently of

the realization s;.

All other decision rules can be shown to be suboptimal. Furthermore, it can be shown that
ve(Ry) > vi(Rg). Intuitively, it is (weakly) better to have a rigid default clause prescribing
the right action with probability p > % rather than a rigid default clause prescribing the right
action with probability (1 — p) < % This implies that Amend(k, —) and Except(k,+) cannot
be (strictly) optimal and we can safely ignore them. Note also that, since Inaction(k) does not
change the state variable, Inaction(k) is optimal in a given state if and only if it is optimal

forever after. The same is true for Except(k, —).

Now we consider all the possible values of coordinate k of the state variable g;_1:

® Y1 = Ck. Obviously in this case Inaction(k) is optimal in the current period and in
any future period:

Vg (Ck) =1- 5k + dvk (Ck) .

Therefore
i b 1—d . '

® Vi 1 = Ry In this case we can restrict our attention to three candidate decision rules:

(i) Cont(k), which yields 1 — &, — 2c + dvg (Cy) = =2 — 2¢ (by (5.1)),

(ii) Except(k,—), which yields 1 — 6y — (1 — p)c + duvy (Ry) ,
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(iii) Inaction(k), which yields p(1 — &%) + dvg (Ry,) -

It follows that
L= o 1=6—(1—ple p(l—&)

v (Ry) = max{ — ¢, T4 T }. (5.2)
® Vi1 = R;.. In this case the candidate decision rules are:
(i) Cont(k), which yields 2
(ii) Amend(k,+), which yields 1 — 6, — pc + d [puy, (Ry,) + (1 — p)vi (Ry)]
(iii) Inaction(k), which yields (1 — p)(1 — &) + dvi (Rx) -
It follows that
- 1=06r  1—=06s—pctdpus (Re) (1—p)(1—0k)
vy (Ri) = max{ — ¢, = di=p) : T4 } (5.3)
where vy (Ry) is given by (5.2).
® Y1 = D. In this case the candidate decision rules are:
(i) Cont(k),
(ii) Amend(k), which yields 1 — &, — ¢ + d[pvy (Ry) + (1 — p)oi (Bi)],
(iii) Amend(k,+), which yields p(1 — 6y — ¢) + d[pvy (Ri) + (1 — p)vg (D)],
(iv) Inaction(k), which yields duv (D).
It follows that
Vg (D) =
— \, p(1 =6k — ¢) + dpvx (Ry,)
max l—d — &, — c+dlpvg (Ri) + (1 — p)og (Bi)], a1 =) ,0} (5.4)

where v; (Ri) and v, (Ry) are given respectively by (5.2) and (5.3). One can verify that the

following intuitive inequalities hold:
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Equations (5.1) to (5.4) fully characterize the component v, (k € N) of the value function

for our problem. The optimal decision rule for each 7, , ; can be derived using the same

equations. For example, if 7, , | = Ry, the optimal decision rule is Cont(k) or Except(k, —) or

Inaction(k) depending on whether the maximum element of the set in the right hand side of

(5.2) is the first, the second or the third one.

Using equations (5.1) to (5.4) and inequalities (5.5), one can derive that the only candidate

optimal plans concerning aspect k are the following (a plan describes only the decisions at

reachable states):

Cr: Cont(k) at D and Inaction(k) at Cy. The value of this plan is: =% — 2¢;

DEy: Amend(k) at D, Amend(k, +) at Ry, Exception(k,—) at Rj. The associated value

.16 2—d _dp(l1-p) .
s = — <1 +ia 1fd(1fp)> =

R} Amend(k) at D, Amend(k,+) at Ry, Inaction(k) at Rj. The associated value is

[1-d(1-p»)](1-6)) dp(1=p) \ ..
A—di—di-p] (1 T 1—d(1—P)> “

RY: Amend(k) at D, Inaction(k) at Ry and Ry. The associated value is [172‘1]’(11:’;)](176’“) —

G

R;: Amend(k,+) at D, Inaction(k) at Ry. The associated value is p(ig’“) — 17;(’;7]3);

Dy: Inaction(k) at D. The associated value is 0.

We can now prove parts (i), (ii) and (iii) of the proposition.

(i) If ¢ < ming{1 — 85}, then Inaction(k) is optimal only if the default clause is contingent

(i.e., at Cy) and Amend(k,+) is not optimal when there is no clause (i.e., at D). Therefore,

if ¢ < ming{1 — 6x}, Cx and DEj, are better than any other plan, for all k. By comparing the

respective associated values, one finds that a contingent contract is optimal if and only if

(1-d)[1—d(1~-p)] <d2-d)p(l-p)
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It is direct to verify that this condition is satisfied if and only if d > d(p), where d(p) is an

increasing function satisfying J(%) = 2 and d(1) = 1. We note that, under the assumption

made in the text that s;(e;) = 1 for all k, this critical function becomes d(p) = ﬁ.

(ii) To see how the ranking of different plans for aspect k depends on ¢y we look at the
coefficient of d in their values. The ranking between Cy and DE is clearly independent of 6.
moreover, since % <p<l,

L 1-dd-p) _1-2dp(l—-p) p
1—-d~ (1-d)[1-d1-p) 1-d ’'1-d

> 0.

Taking the upper envelope of the plans values as (positive affine) functions of é; we obtain a
decreasing convex function and two thresholds 8, < 6" (functions of d, p and c¢); the envelope
has slope _Tld to the left of 6, and is flat to the right of 6*. This means that the Dy plan is
optimal for 6, > 6%, one of the Ry plans is optimal if 8§, < 6, < 6" and the Cy or DE; plan is

optimal for 6, < 6.

For (iii)-(iv) compare the derivatives of the values of the different plans with respect to d

and p. B

Proof of Proposition 2

Unlike in the proof of Proposition 1, due to the autoregressive nature of the shocks we
cannot work with the restricted state space GG, but we have to work with the unrestricted state
space G x S. The value function is still additively separable in the N dimensions:

N

U (Gi—1,5) = Ukﬁk,t—b si(ex))-
k=1

We now derive each component v; (k € N) of the value function using a shortcut. We exploit
the symmetries of the model to partition the state space for aspect k in four cells corresponding

to the following situations:
Dy, (Discretion): there is no clause regulating aspect k in the default contract.

M, (Match): the default contract contains the rigid k-clause matching the current state of

the environment.
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N M, (No Match): the default contract contains the rigid k-clause that does not match the

current state of the environment.
Cy (Contingent rule): the default contract contains the efficient contingent k-clause.

For each possible situation, one can show that there are only three candidate one-period

decision rules:
(i) Cont[k]: include in the default contract the contingent clause Ck.

(ii) Amend[k]: include in the default the rigid clause matching the current state of the
environment (Ry if s, = 1 and Ry, if s, = 0). Using this rule and independently of the current

situation, the system makes a transition to situation M with probability (%—F p) and to situation

N M, with probability (5 — p).

(iii) Inaction[k]: do not introduce any modification concerning aspect k. Under this rule,
if the situation is M}, (or NMy) the system stays there with probability (5 + p) and makes a
transition to NMj, (respectively Mj,) with probability (3 — p).

Let us consider the value of each possible situation: with a slight abuse of notation we write

Uk(Dk), Uk(Mk), Uk(NMk) and Uk(Ck)

e C; (Contingent rule): Inaction[k] is optimal in the current period and in any future

period, thus we have

wl(C) = % (5.6
e M; (Match): In this case there are two candidate decision rules:
(i) Cont[k],
(ii) Inaction[k], which yields 1 — 6; + d[(5 + p)ve (Mi) + (3 — p)vk (N M),
It follows that
vy, (My) = max { 11__6; — 20, — % _Ii (__ _(% :_ I;(NMK) } (5.7)

e NM; (No Match): In this case there are three candidate decision rules:
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1-68,
— 2c,

(ii) Inaction[k], which yields d [(3 — p)vr (Mk) + (3 4+ p)ve (NMj)]

(i) Cont[k|, which yields

(iii) Amend[k], which yields 1 — 6, — c+d [(3 — p)vr (NMy) + (5 + p)vi (My)]

It follows that

-2 2 1— 6, — d
max{l_d c, 1—d(%+p) , E—C+

1 — 6, —c+d(3 + p)ow(My)

e D, (Discretion): In this case the candidate decision rules are:

(i) Cont[k], which yields =% — 2c,

(il) Amend|[k], which yields 1 — &, — ¢ + d[(3 + p)vr (M) + (3 — p)v, (NMy)],

(iii) Inaction[k], which yields dvg(Dy).

It follows that
Vi (Dk) =

1-96 1 1
max{—— ; =2, 1= 8 —c+d | (5 + o) (My) + (5 = p)us (NMy) | ,0} (5.9)

Equations (5.6) to (5.9) fully characterize the component vy (k € N) of the value function
for our problem. One can derive that the only candidate optimal plans concerning aspect k are

the following

e Ci: Contlk] in situation Dy and Inaction[k] in Cy. The value of this plan is: 22 — 2c.

o A, Amend[k] in situations Dy and NMy, Inaction[k] in M. The associated value is

T —c[l+5G -]

e Ri: Amend[k| in situation D, Inaction[k] in M, and NM,. The associated value is
1—(5k_C+d(1—6]€) [ﬁ_l_l——gdp .

e Dy: Inaction[k] at all states. The associated value is 0.
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Parts (i)-(iv) of the proposition can then be shown with a similar logic as the one used in

the proof of proposition 1. B

Proof of Lemma 1

We exhibit a subgame perfect equilibrium keeping the principal at his maxmin under the
parameter restriction d > d(p) = fp. Consider the following strategies: for all (F,s) (where
F is the default contract) the principal makes amendments and exceptions as in the Markov
perfect equilibrium. Wages are determined according to a punishment phase. There are two
punishment phases Pp and P4. The system starts in phase Pp. When the system is in phase
Pp the (offered) wage is the net profit generated by the offered contract. When the system is
in phase P, the (offered) wage is the disutility generated by the offered contract. As soon as
player ¢ deviates from his strategy the system switches immediately to phase P;. If the system
is in phase P4 the agent accepts the offered contract (and chooses the one-shot best response).
Thus, in phase P4 the Markov perfect equilibrium is played. If the system is in phase Pp, the
new default set of clauses is £ , the offered contract is (F’,m) and the state of nature is s, then
the agent accepts if and only if

m — §(F',s) > dv(F"), (5.10)

where v(f ") is the expected PDV of the flow of net surpluses generated by the Markov perfect

equilibrium starting at default F

By construction, the agent has no incentive to deviate. In particular, suppose that the state
of nature is s, the principal moves the default to F" and offers (F',m) so that, as a consequence,

the system enters (or stays in) phase Pp.

If m—6(F,s) < dv(ﬁ' ), the agent is supposed to reject. The expected payoff if the agent
conforms is dv(F"). The expected payoff of a one-shot deviation is m — 8(F”, s), because after
the deviation the system enters phase P, where the agent gets his maxmin (zero). Therefore

rejection is indeed a best response.
Ifm—6(F,s) > dv(ﬁ ") the agent is supposed to accept and this is obviously a best response.

Let us check that the principal has no incentive to deviate in phase Pp. Let the overall state
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be (ﬁ ,8), where F= (5 , E, ﬁ), C is the set of contingent default clauses, R is the set of rigid
default clauses and ﬁ is the set of negative, rigid default clauses. Since the principal will be
kept at his maxmin from the following period, the only way he can make a profitable one-shot
deviation is to make amendments F4 = (C4, RA,RA) and exceptions F'4 = (C¥, RF ,EE) and
offer a wage m such that the new default F = f(ﬁ, F4) and the resulting new contract F”’ =
f(]::”, FE) satisfy (5.10), making the agent accept, and furthermore m < 7(F', s)—Cost(F4, F¥)
(where w(F”, s) is the gross profit generated by F’ at s), so that he gets a positive payoff in the

current period.

Clearly, a profitable deviation exists if and only if there exists (F4, F'¥) and a state of nature
s such that
m(F',s) — 8(F',s) — Cost(F4, FF) > dv(F’)

To show that this is not possible, we will provide a lower bound for the RHS of the above
inequality and an upper bound for its LHS, and show that the former is bigger than the latter.

Note that

~1

v(F)=v(C",R,R) >

%d D=8+ Y (1—p)(1—6&)+ > (1=bk—0) |,

keC" keRIUR ke(CEUREURD )\ (G'UR'UR )
because it is possible to use the default clauses of F’ in all future periods (in each period, each
positive rigid clause k yields 1 — ¢; with probability p > (1 — p), and each negative rigid clause
k yields (1 — 6g) with probability (1 — p)) and to make exceptions in every period with the

clauses included in FZ but not included in E'.

On the other hand,

T(F',5)=8(F,5)—Cost(F*, FF) < Y " (1— &)+ Y (1—6p)+ > (1—6,—c).

kel keRIUR ke(CEUREURE )\ (G'UR'UR)
But d > ﬁ implies 1 < 1%‘ld(l —p) < f‘ld. Therefore

D=+ Y, (1-b)+ > (1—6,—c) <

= ~ =/ — —~ —~ =/
ked’ kER'UR ke(CEUREURY \(C'UR'UR )

36



< T 0t Y a-na-s)+ ) (16— 0)

it _ = — ~ ~ =
keC kER'UR ke(CEUREUR" )\(C'UR'UR )

and a profitable deviation is impossible. B

Proof of Lemma 2

From the constraints of (P) we derive the following set of constraints:

dMy > Zéﬁ%d >t Y ok (5.11)

keKL keKLUKc keKp
My < — o1+ > p (5.12)
— 1 _ d Y
keKLUKc keKg
d
M, > Z O + T—d Z O + Z POk | (5.13)
keKLUKcUKR keKLUKc keKR
d
M1§21+Z(1—20)+Z(1—c)+m o1+ ) p). (5.14)
keK] keKco kcKr keKLUKc keKg

Inequality (5.11) is derived from (ICY) evaluated at ¢t = 1. Inequality (5.12) is derived from
(ICp) evaluated at t = 2 by averaging over states and multiplying both sides of the inequality
by d. Inequalities (5.13) and (5.14) are derived, respectively, from (IC%) evaluated at ¢ = 1 and

from (PCp), making use of the assumption s;(e;) = 1 for all k.

Inequalities (5.11) and (5.12) yield
d
Dok D =)+ ) p1-6)], (5.15)
keK], keKLUKc kcKr

while inequalities (5.13) and (5.14) imply that the NPV of the surplus net of writing costs must

be non-negative:

D=6+ Y [M=b—2c(1=d)]+ > [(1—d+pd)(1—6)—c(l—d)] >0 (516)

keK], keKc keKr
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We are going to show that a solution to the auxiliary problem can be completed so as to
satisfy all the constraints of (P). Since the two problems have the same objective function
and the constraint of the auxiliary problem is derived from the constraints of (P), this implies
that (K}, Ko, Kr) solves the auxiliary problem if and only if it is part of some solution of the

original problem (P).

Let (K., K¢, Kgr) be a solution of the auxiliary problem. A complete solution to problem
(P) can be obtained as follows. Focus on wage profiles that are stationary from ¢ = 2 on. From
period ¢t = 2 on, give all the surplus to the agent, so that (ICp) is satisfied as an equality
for each s. This determines the value of M, and mgy(s) for each s; it also implies that (IC%)
is satisfied for every ¢ > 2. Substituting this value of M, in (ICY) we obtain (5.15), which is
satisfied by assumption. Thus (ICY) holds too. Derive m; and M; by solving (PCp) as an
equality. This way the agent gets all the NPV of the surplus; thus if (5.16) is satisfied the
same must hold for (IC%) at t = 1. Since “no-contract” is a feasible choice that yields zero
surplus, (K}, Ko, Kr) must indeed satisfy (5.16). Therefore, (K., K¢, Kg, (m;)$2,) satisfies
all the constraints of (P). B

Proof of Proposition 3

We first prove point (ii). We argue in three steps: (1) For any pair of tasks k, k', if 6, > 6
then it cannot be (*)-efficient to regulate task k informally and task k' by formal contingent
clause. Suppose this is the case, and consider swapping the two tasks, so that task &' is now
regulated informally and task k by formal contingent clause. The value of the objective does
not change, and the constraint gets relaxed; applying our selection criterion, this is preferable
to the original contract. (2) For any pair of tasks k, &', if 65 > O then it cannot be optimal
to regulate task k by formal contingent clause and task &’ by formal rigid clause. Suppose
this is the case, and consider swapping the two tasks. This improves the value of the objective
without violating the self-enforcement constraint. (3) For any pair of tasks k, k', if 6 > 6k
then it cannot be optimal to regulate task k by formal rigid clause and leave task &’ out of the
contract. Suppose this is the case, and consider swapping the two tasks. Again, this improves
the value of the objective without violating the self-enforcement constraint. The claim follows

right away.
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Point (i) is an immediate corollary of point (ii), if one notices that with ¢ sufficiently small
formal contingent rules dominate formal rigid rules and discretion (it is easy to see that a
sufficient condition is ¢ < ming(1 — 65): in this case making an exception is always surplus

improving, but d > d(p) implies that contingent rules dominate default cum exceptions).

The only part of point (iii) that is not straightforward is that F' may increase with ¢. To show
this, we display a numerical example. Suppose there are four tasks, with 6; = 2/3, 62 = 3/4,
63 = 13/16 and 6, = 29/32, and suppose p = %, d= % In this case, we claim that there exists
a critical level ¢* such that, if ¢ < ¢*, the optimum is {C{, C%, Cs, Cy}, and if c is slightly higher
than ¢* the optimum is {C{, Cy, R3, D}. First note that for these parameter values, contracts
{C1,CE Cs,C} and {CY,C5, R3, D} are implementable, i.e. satisfy (5.15), while contracts
{ct,ct cl ¢y} and {Cf,CL, Cs, Ry} are not. Also note that contract {C,Cs, Rz, D} yields
higher surplus than {C, Ry, R3, R4}. These facts imply that the best implementable contract
among those that cost 4cis {C], CI, Cs,C,}, and the best implementable contract among those
that cost 3c is {Cf,Cs, Ry, D}. This in turn implies that there is a critical level ¢* such that
for ¢ € (0, ¢*) the optimum is {C{, C4, Cs, Cy} (F = 3), and for ¢ in a right neighborhood of ¢*
the optimum is {C{, Cy, Rs, D} (F = 2). It follows that F' may increase if ¢ increases.

We leave it to the reader to construct an example in which a similar result obtains for an

increase in d. l
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