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Abstract

We study two-sided markets with a �nite numbers of agents on each

side, and with two-sided incomplete information. Agents are matched

assortatively on the basis of costly signals. We study how the signalling

activity and welfare on each side of the market change when we vary

the number of agents and the distribution of their attributes, thereby

emphasizing new phenomena that cannot occur in large markets. We also

identify conditions under which the potential increase in expected output

due to assortative matching (relative to random matching) is completely

o¤set if signalling is wasteful. Finally, we look at the continuous version

of our two-sided market model, and establish the connections to the �nite

version. Technically, the paper is based on the very elegant theory about

stochastic ordering of (normalized) spacings and other linear combinations

of order statistics of distributions with monotone failure rates, pioneered

by R. Barlow and F. Proschan (1966, 1975) in the framework of reliablity

theory.
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1 Introduction

We examine two-sided markets where a �nite number of privately informed

agents on each side of the market compete for potential matching partners

on the other side. Examples include marriage markets, labor and education

markets, markets for venture capital and new technologies. In these markets,

agents typically di¤er in their attributes, and they gain from being matched

with a better partner. If the matching surplus function is supermodular, as we

assume here, total surplus from matching is maximized by matching the agents

assortatively. But assortative matching cannot work (at least not directly) if

types are private information - here signalling can ful�ll a crucial role. By

revealing private information about types, signalling can help determine who is

to be matched with whom, thus increasing aggregate output. One of our main

goals is to identify conditions under which the potential increase in output is

completely o¤set by the costs of signalling.

The paper combines three main features:

1. We consider a �nite number of agents on both sides of the market. More

precisely, we �multiply�two tournament models with several agents and

several prizes (as developed by Moldovanu and Sela 2001, 2005) by letting

the agents on one side represent the prizes for which the agents on the

other side compete. Thus, both sides are active here and the signalling

behavior of each agent is a¤ected by features (such as number of agents

and distribution of characteristics) of both sides of the market.

2. We allow for incomplete information on both sides. Since there is a �nite

number of agents, no agent knows here for sure his/her rank in its own pop-

ulation, nor the quality of a prospective equilibrium partner. This should

be contrasted with the situation in models with a continuum of agents, or

with complete information, where knowledge of own attribute and of the

distributions of attributes on both sides of the market completely deter-

mines own and equilibrium-partner rank, and the value of the equilibrium

match. In our model values are interdependent, and agents need to form

expectations about the attributes of other agents on both sides of the

market.

3. We introduce a new mathematical methodology to the study of two-sided

markets with a �nite number of agents. This is based on the elegant work

on stochastic orders among (normalized) spacings (e.g., di¤erences) and

other linear combinations of order statistics, pioneered by Richard Barlow
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and Frank Proschan (1965, 1966, 1975) in the framework of reliability

theory.1 Roughly speaking, Barlow and Proschan show how the behavior

of linear combinations of order statistics is controlled by monotonicity

properties of the failure rates of underlying distributions. As mentioned

above, our agents form expectations about the others� attributes, and

their strategic behavior is determined by properties of the marginal gains

from getting (stochastically) better partners. We can apply Barlow and

Proschan�s theory precisely because these marginal gains are represented

here by spacings of order statistics, and because aggregate signalling and

net welfare on each side of the market are linear combinations of so called

normalized spacings.2

The paper is organized as follows:

In Section 2, we describe the matching model and introduce some useful

de�nitions.

In Section 3 we derive a side-symmetric signalling equilibrium in strictly

monotonic strategies. In this equilibrium, assortative matching based on the

ranking of signals is equivalent (in terms of output) to assortative matching

based on the ranking of true attributes.

The e¤ects of increasing the number of agents (i.e., entry) in two-sided mar-

kets are analyzed in Section 43 . Entry a¤ects the expected matching surplus,

but also the agents�signalling activity. We show that the e¤ects of entry (e.g.,

net e¤ect on welfare on each side of the market) are determined by the failure

rates of the underlying distributions of characteristics. In particular, we illus-

trate phenomena that are speci�c to relatively small markets. The entry results

are also methodologically useful since some of our subsequent proofs proceed by

considering a market with equal numbers of agents on each side to which we

add agents in order to create a long side.

In Section 5 we study the e¤ects (on both sides of the market) of changes

in the distribution of attributes on one side. In Subsection 5.1 we �rst study

the e¤ects of increased heterogeneity on output, signalling, and welfare. While

it is intuitive that more heterogeneity increases output in assortative matching,

we show that the e¤ect on signalling activity and welfare may be ambiguous

1For basic texts on order statistics and stochastic orders, see David and Nagaraja, (2003),

and Shaked and Shanthikumar (1994), respectively. Boland et al. (2002) is a good survey of

the material most relevant for the present study.
2These are appropriately scaled spacings (see below).
3Our comparative statics results in this and the next section focus on aggregate measures

of signalling and welfare. We brie�y point out the implications for individual measures - these

are governed by the same properties of failure rates.
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(and that it depends, again, on failure rates). We also examine the conditions

under which one side of the market necessarily incurs higher signalling costs

than the other. In Subsection 5.2 we increase the distribution of one side of the

market (say men) in the hazard rate order (which implies �rst order stochastic

dominance). The e¤ects on total output, men�s total signalling, and women�s

total welfare, respectively are unambiguous: these always increase. Quite inter-

estingly, women�s total signalling and men�s total welfare necessarily increase

only under additional conditions on failure rates.

In Section 6 we compare random matching (without any signalling) with

assortative matching based on costly and wasteful signalling. For distribu-

tion functions having an decreasing failure rate average (DFRA), assortative

matching with signalling turns out to be welfare-superior, while for distribution

functions having an increasing failure rate average (IFRA), random matching

is superior. In the latter case, we also show that agents may be trapped: given

that all others engage in signalling, signalling is indeed individually optimal,

even though each agent may be better o¤ under random matching, no matter

what her (his) type is.

In Section 7 we look at the continuous version of our market model. Di-

rect arguments in the continuous model can be used to yield similar results

to the discrete version, but under weaker conditions. Instead of failure rates,

these conditions involve now the coe¢ cient of (co)variation of the distributions

of types. A main insight is that total signalling e¤ort in the continuous model

equals exactly half of total output. We use this result to show that, in symmetric

settings, assortative matching with signalling is welfare-superior (welfare infe-

rior) to random matching if the coe¢ cient of variation is larger (smaller) than

unity. We also show that the discrete model analyzed in the previous sections

converges to the continuous version by letting the number of agents go to in�n-

ity. In particular, some phenomena displayed in the �nite version disappear in

large populations, calling for some caution when making arguments (e.g., about

welfare e¤ects) in small markets.

Section 8 concludes. Appendix A contains several useful results from the

statistical literature, while Appendix B contains all the proofs of our results.

Finally, we want to note here that many of our results have immediate im-

plications for models with incomplete information on one side, or with complete

information, as have been often used in the literature reviewed below. We give

some examples in the text.
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1.1 Related literature

The general insight that agents may choose costly signals to reveal private in-

formation is of course well-known: Spence (1973) has prominently shown how

investment in education may serve as a signal to prospective employers even

if the content of the education is itself negligible. A related idea appears in

evolutionary biology where animals signal their �tness, i.e., their propensity to

survive and reproduce, to potential mating partners. According to the handicap

principle, put forward by Zahavi (1975), signals must be disadvantageous in

order to be honest. The peacock�s tail is a classical example.4 The handicap

principle is widely used to relate the evolution of some animal and human traits

to sexual selection, i.e., the competition for mates,5 but we are not aware of a

full-�edged signalling-cum matching model in the biological literature (see the

survey in Maynard-Smith and Harper, 2003).

The study of two-sided matching based on individual preferences was pi-

oneered by Gale and Shapley (1962).6 Becker (1973) focused on populations

vertically di¤erentiated by a unique, linearly ordered attribute, and stressed the

implications of assortative matching.7

In Becker�s framework (with a continuum of types and complete informa-

tion), McAfee (2002) shows that, for a certain subset of distributions of charac-

teristics,8 a coarse matching involving only two distinct classes achieves at least

as much output as the average of assortative matching and random matching.

Cole, Mailath and Postlewaite (1992) �rst emphasized an important variety

of models (called matching tournaments by Hopkins, 2005) where agents get

matched on the basis of some ex-ante costly actions (as the signals in our paper).

We review below several relevant papers on matching tournaments - none of

them contains a model with two active sides, incomplete information on both

sides, and �nite numbers of agents.

Cole, Mailath and Postlewaite (2001a,b) study complete information models

with a continuum of agents and a �nite number of agents, respectively, and with

identical distributions of attributes. Agents can increase the value of a match

by making costly investments, and the focus is on the possibility of achieving

4Charles Darwin once remarked: �The sight of a peacock tail, whenever I gaze at it, makes

me sick�.
5See Zahavi and Zahavi, 1997, and Miller, 2001.
6Roth and Sotomayor (1990) is an excellent survey of the literature following Gale and

Shapley�s contribution.
7The classical contributions focus on centralized matching. In the framework of Becker�s

model, Shimer and Smith (2000) derive conditions under which a decentralized search equi-

librium leads to assortative matching as search frictions become small.
8This is a subset of the class of distributions with increasing failure rates.
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e¢ cient ex-ante investments levels (thus overcoming the hold-up problem).

Peters (2004) studies the limit, as the number of agents goes to in�nity, of

mixed strategy equilibria arising in a model where a �nite number of agents on

each side of the market make costly investments prior to the match. There is

complete information about the agents�types, and the utility of each agent de-

pends on both her and her partner�s investment. The limit need not correspond

to the hedonic equilibrium in the market with a continuum of agents on each

side.

Bulow and Levin (2005) look at the mixed-strategy equilibrium in a complete

information model with a �nite number of workers and �rms. Only �rms are

active, and they make salary o¤ers to workers, while workers choose �rms in

terms of their o¤ers. The main results compare the resulting outcome with the

competitive equilibrium in that market.

All models mentioned so far had complete information about attributes. Let

us now review several models that allow for incomplete information on only one,

active side.

Chao and Wilson (1987) and Wilson (1989) consider a seller facing a contin-

uum of customers who di¤er in their valuations for service quality. Valuations

are private information. They show how customers can be assortatively matched

to service qualities by o¤ering them price menus that induce them to reveal their

type. They also derive asymptotic results about the relative e¢ ciency loss of

o¤ering coarser quality classes.

Fernandez and Gali (1999) compare markets to matching tournaments in a

model with a continuum of agents on each side. Again, only one side is active.

The main result is that, in spite of the wasteful signalling, tournaments may be

welfare superior to markets if the active agents have budget constraints.

Hopkins and Kornienko (2005) and Hopkins (2005) consider several versions

of a labor markets with a continuum of workers and �rms who di¤er in their

quality levels. Only one side is active: while the quality of �rms is observable,

workers must exert an e¤ort in order to signal their quality to �rms. Their

main results distinguish the e¤ects on individual equilibrium behavior of workers

caused by changes in the distribution of workers�attributes from those caused

by changing the distribution of �rms�attributes. Our analysis in Section 5 is,

roughly speaking, similarly motivated, but the focus here is on aggregate levels

of output, signalling, and welfare in markets where both sides are active.

In Nöldeke and Samuelson�s (2003) biologically inspired model, several pri-

vately informed males compete for the attention of a unique female by sending

costly signals. This is similar to an all-pay one-object auction, but the twist
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is that the chosen male�s �tness (and hence his ultimate attractiveness for the

female) is reduced by the amount of the signal -this would correspond here to

a corresponding decrease in the feasible output of a matched pair. The authors

identify situations in which a signalling equilibrium may not exist.

Moldovanu and Sela (2001, 2005) study all-pay auctions with a �nite number

of privately informed bidders, and with a �nite number of di¤erent prizes. Bids

are submitted and ranked and then prizes are awarded accordingly (highest

prize to highest bidder, etc...). The focus is on the revenue e¤ects of changes

in the number and size of the various prizes, in the bidding costs, and in the

tournament�s structure (e.g., one-stage or two-stage competition over prizes). As

mentioned above, our present model is the extension of their analysis whereby

�prizes come to life�.

Kittsteiner and Moldovanu (2005) study an all-pay auction model where

privately informed, randomly arriving (Poisson) customers bid for positions in

a queue. In their model the value of a customer-position match depends also

on attributes (e.g., processing times) of other customers. Both assortative and

anti-assortative matching can occur in equilibrium, depending on the shape of

the function measuring the cost of delay.

Damiano and Li (2004) allow for two-sided incomplete information in a

model with a continuum of types on each side, extending the type of analy-

sis performed on one side by Chao and Wilson (1987) and Wilson (1989) - we

show here how this model arises as the limit of our model with �nite numbers

of agents on each side (see Section 7). Damiano and Li �nd conditions under

which a revenue-maximizing match-maker �nds it optimal to choose assortative

matching rather than coarser schemes.

Hoppe, Moldovanu and Ozdenoren (2005) assess an intermediary�s revenue

loss from coarse matching à la McAfee (2002), and study the e¤ects on revenue

of various contractual agreements among matched partners.

The above two papers consider models with two-sided incomplete informa-

tion. In this context it is also worth mentioning the relations to the literature

on double auctions - see Perry and Reny (2005) for a recent model with in-

terdependent values, and for a good survey of this strand of the literature. In

contrast to the standard case in the double auction literature, our signals (that

can be interpreted as bids) only determine who trades with whom, but not the

terms of trade. On the other hand, in Perry and Reny�s model (and in most

of the literature) all traded units are identical (so that the optimal matching

problem is fairly simple), while here they are heterogenous.
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2 The matching model

There is a �nite set N = f1; 2; :::; ng of men, and a �nite set K = f1; 2; :::; kg of
women, where n � k: Each man is characterized by an attribute x; each woman

by an attribute y: If a man and a woman are matched, the utility of each is the

product of their attributes. Thus, total output from a match between agents

with types x and y is 2xy:

Agent�s i attribute is private information to i: Attributes are independently

distributed over the interval [0; �F ]; [0; �G]; �F; �G � 1; according to distribu-
tions F (men) and G (women), respectively. For all distributions mentioned in

the paper we assume (without mentioning it again) that F (0) = G(0) = 0; that

F and G have continuous densities, f > 0 and g > 0; respectively, and �nite

�rst and second moments - in particular, this last requirement will ensure that

all integrals used below are well de�ned (e.g., all order statistics have �nite

expectations).

We study the following matching tournament: Each agent sends a costly

signal b; and signals are submitted simultaneously. Agents on each side are

ranked according to their signals, and are then matched assortatively. That is,

the man with the highest signal is matched with the woman with the highest

signal, the man with the second-highest signal is matched with woman with

the second-highest signal, and so forth. Agents with same signals are randomly

matched to the corresponding partners. The utility of a man with attribute x

that is matched to a woman with attribute y after sending a signal b is given by

xy � b (and similarly for women). Thus, signals are costly. For the subsequent

welfare comparisons we assume that signalling e¤orts are wasted from the point

of view of our men and women9 . In other variations, not explicitly considered

here, these may accrue as rents to a third party. The equilibrium analysis is

invariant to such alternative speci�cations.

Note that all our results can be extended to asymmetric production functions

having the form �(x)�(y) , where � and � are strictly increasing and di¤erentiable

(see Section 5.1 for an example with a Cobb-Douglas production function)

2.1 Order statistics and hazard rates

Let X(1;n) � X(2;n) � � � � � X(n;n) and Y(1;k) � Y(2;k) � � � � � Y(k;k); denote

the order statistics of men and women, respectively. We de�ne X(0;n) � 0

(Y(0;k) � 0).
Let F(i;n) (G(i;k)) denote the distribution of X(i;n) (Y(i;k)). The density of

9That is, apart from their function enabling matching.
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X(i;n) is given by :

f(i;n) (x) =
n!

(i� 1)! (n� i)!F (x)
i�1

[1� F (x)]n�i f (x) ;

and similarly for Y(i;k):

Let Fni (s) be the probability that a man with type s meets n�1 competitors
such that i�1 have a lower type and n� i have a higher type. For i = 2; :::n�1;
we obtain:

Fni (s) = F(i�1;n�1) (s)� F(i;n�1) (s) =
(n� 1)!

(i� 1)! (n� i)!F (s)
i�1

[1� F (s)]n�i ;

We let Fnn (s) = F(n�1;n�1) (s) ; and Fn1 (s) = 1� F(1;n�1) (s) :
Similarly, we denote by Gki (s) the probability that a woman with type s

meets k � 1 competitors such that i � 1 have a lower type and k � i have a

higher type.

Let EX be the expectation of F , and let EY be the expectation of G:

We denote by EX(i;n) (EY(i;k)) the expected value of the order statistic X(i;n)

(Y(i;k)), and de�ne EX(0;n) = EY(0;k) = 0: A useful identity, repeatedly used

below, is :

nX
i=1

EX(i;n) = nEX

De�nition 1 Let H be a distribution on [0; �H ] with density f .

1. The failure rate of H is given by the function � (x) � f (x) = [1�H (x)] ;
x 2 [0; �H):

2. H is said to have an increasing (decreasing) failure rate (IFR) (DFR) if

� (x) is increasing (decreasing) in x.10

3. H is said to have an increasing (decreasing) failure rate on average (IFRA)

(DFRA) if (
R x
0
� (t) dt)=x is increasing (decreasing) in x.

The exponential distribution has a constant failure rate, and it is the only

distribution that is both IFR and DFR. Clearly, the family of IFRA (DFRA)

distributions includes all IFR (DFR) distributions.

10 IFR distributions are also called logconcave. Examples are the exponential, uniform,

normal, power (for � � 1), Weibull (for � � 1); gamma (for � � 1). DFR distributions are

also called logconvex. Examples are the exponential, Weibull (for 0 < � � 1); gamma (for

0 < � � 1): See Barlow and Proschan (1975).
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3 Equilibrium analysis

We focus below on a symmetric equilibrium where all agents on one side of the

market use the same strategy.

Assume that all men use the same, strictly monotonic and di¤erentiable

equilibrium signalling function �. Then, the maximization problem of a man

with type x is

maxs
�Pn

i=n�k+1 xF
n
i (s)EY(k�(n�i);k) � � (s)

	
The �rst order condition is

�0 (s) =
n�1X

i=n�k+1
s
�
f(i�1;n�1) (s)� f(i;n�1) (s)

�
EY(k�(n�i);k)

+f(n�1;n�1) (s) sEY(k;k)

The man with the lowest type either never wins a woman (if n > k) or wins

for sure the woman with the lowest type (if n = k). Hence, the optimal signal

of this type is always zero, which yields the boundary condition � (0) = 0: The

solution of the di¤erential equation gives candidate equilibrium e¤ort functions.

Proposition 1 The pro�le of strategies where each man employs the strictly

increasing signalling function

� (x) =

Z x

0

s

(
n�1X

i=n�k+1

�
f(i�1;n�1) (s)� f(i;n�1) (s)

�
EY(k�n+i;k)

)
ds

+

Z x

0

sf(n�1;n�1) (s)EY(k;k)ds (1)

and each woman employs the analogously derived signalling function  (y) con-

stitutes an equilibrium of the matching contest.

The next proposition reveals that the aggregate signalling e¤ort (say women�s)

is a weighted sum of expectations of normalized spacings of order statistics on

the men�s side, (n � i + 1)(X(i;n) �X(i�1;n)), where the weights EY(i�(n�k);k)
are expectations of the women�s order statistics (and vice-versa for men). The

weights are increasing in i:

The same observation holds for the net welfare terms of each side (note that

the expression for the men�s total welfare, (3), is similar to that of women�s total

signalling, while women�s total welfare, (5), is similar to men�s total signalling).

Here we introduce the assumption of wasteful signalling.
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Proposition 2 For any F;G; n; k; it holds that:

1. Men�s total signalling e¤ort and (net) welfare are given by :

Sm (n; k) = n

Z �F

0

� (x) f (x) dx

=
nX

i=n�k+1
(n� i+ 1)

�
EY(k�n+i;k) � EY(k�n+i�1;k)

�
EX(i�1;n);

(2)

Wm(n; k) =
nX

i=n�k+1
EX(i;n)EY(k�(n�i);k) � Sm (n; k)

=
nX

i=n�k+1
(n� i+ 1)

�
EX(i;n) � EX(i�1;n)

�
EY(i�(n�k);k) (3)

2. Women�s total signalling e¤ort and (net) welfare are given by :

Sw (n; k) = k

Z �G

0

 (y) g (x) dx

=

nX
i=n�k+1

(n� i+ 1)
�
EX(i;n) � EX(i�1;n)

�
EY(k�n+i�1;k)

(4)

Ww(n; k) =
nX

i=n�k+1
EX(i;n)EY(k�(n�i);k) � Sw (n; k)

=
nX

i=n�k+1
(n� i+ 1)

�
EY(i�(n�k);k) � EY(i�(n�k)�1;k)

�
EX(i;n)

(5)

3. Total expected (net) welfare in assortative matching based on costly sig-

nalling is at least half the expected output (or, in other words, aggregate

signalling e¤orts are less than half output).

W (n; k) = 2

nX
i=n�k+1

EX(i;n)EY(k�(n�i);k) � Sm(n; k)� Sw(n; k)(6)

�
nX

i=n�k+1
EX(i;n)EY(k�(n�i);k) (7)

The spacings of order statistics of types (X(i;n) � X(i�1;n)) represent the

marginal gains from winning a stochastically better partner. For the exponen-

tial distribution H; it is well-known that the normalized spacings

(n� i+ 1) (Z(i;n)�Z(i�1;n)) are i.i.d. for i = 1; 2; ::n: Thus, it is to be expected
that certain transformations of the exponential lead to some monotonicity prop-

erties of the spacings. Indeed, Barlow and Proschan (1966) have shown:
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Theorem 1 If F is IFR (DFR), then the corresponding normalized spacings

(n� i+ 1)
�
X(i;n) �X(i�1;n)

�
are stochastically decreasing (increasing) in i =

1; 2; :::; n for �xed n , and stochastically increasing (decreasing) in n � i; for

�xed i:

Thus, if the normalized spacings are increasing in i (as is the case for DFR

distributions), both total signalling e¤ort and total welfare will be relatively

high (we have �assortative matching�between weights and normalized spacings

in the above expressions). The opposite holds for IFR distributions, since then

the normalized spacings are decreasing in i:

In the following sections, we will obtain several kinds of comparative static

results with respect to aggregate measures - as we will see, some of the e¤ects

are particular to relatively small markets and cannot occur in large populations

(see Section 7). The di¤erence stems from the fact that, in the model with a

continuum of agents arising as the limit of the present one, total signalling is

very tightly related to output (in ratio of one half), while here there is a leeway

among output and signalling (caused by the strictly positive spacings) that may

get larger or smaller in various circumstances.

4 The e¤ects of entry

We now analyze the e¤ects of changes in the number of agents on each side.

Additional agents unambiguously increase the expected matching output.

If there is entry on the long side (i.e. entry by men), the number of matches

remains unchanged, but the expected value of the i�th man is increased. If there

is entry on the short side (i.e. entry by women), both the number of matches

and the expected value of the i�th woman gets higher. On the other hand, entry

also a¤ects the agents�signalling activity. The next propositions show how the

net e¤ect on welfare depends on certain properties of the distribution of agents�

types.

Proposition 3 Suppose there is entry on the men�s side. Then, for all G,

1. men�s total signalling increases for all F;

2. women�s total signalling increases (decreases) if F is DFR (IFR);

3. men�s total welfare increases (decreases) if F is DFR (IFR);

4. women�s total welfare increases for all F:
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Entry on the men�s side leads to sti¤er competition among men, and hence

higher signalling e¤orts by men.11 In contrast, the e¤ect on women�s sig-

nalling e¤ort depends on whether the distribution of men�s type F has an

increasing or a decreasing failure rate. By Theorem 1, if F is DFR (IFR),

(n� i+ 1)
�
X(i;n) �X(i�1;n)

�
is stochastically increasing (decreasing) in i; for

�xed n. This implies that the marginal gains from winning a better man are

relatively high (small) with respect to highly-ranked men if F is DFR (IFR).

Moreover, by Theorem 6, if F is DFR (IFR), the di¤erence of successive order

statistics is stochastically increasing (decreasing) jointly in i and n. This im-

plies that, for DFR (IFR), entry by men even further increases (reduces) the

relatively high (small) marginal gains from winning a better men with respect

to highly-ranked men. As a consequence, total signalling by women goes up if

F is DFR, while the opposite holds if F is IFR.

Note that total output is always increasing in the number of men. It can be

shown that this increase is larger if F is DFR than if F is IFR. On the women�s

side, we �nd that this output e¤ect outweighs the increase in total signalling if

F is DFR. Moreover, if F is IFR, women�s total signalling goes down. Hence,

women�s total welfare is always increasing in the number of men.

On the men�s side, if F is DFR, the output e¤ect outweighs the increase

in men�s signalling, similarly as on the women�s side. However, in contrast to

women�s total signalling, men�s total signalling gets also higher if F is IFR. In

fact, we �nd that in this case the signalling e¤ect outweighs the output e¤ect,

leading to a reduction in men�s total welfare. Combining these observations,

we can conclude that overall total welfare is increased if F is DFR, but may be

reduced if F is IFR. The following example illustrates a welfare loss due to an

increase in the number of men.

Example 1 Suppose F = x10; G = x; and � = 1: Fix k = 3: Then: W (3; 3) '
2: 0779; W (4; 3) ' 1: 5202; W (5; 3) ' 1: 4994, W (6; 3) ' 1: 4944; W (7; 3) '
1: 4929; W (8; 3) ' 1: 4926; for n > 8 entry on the men�s side is welfare increas-
ing, and limn!1W (n; 3) = 1: 5

The next proposition analyzes the e¤ects of entry on the women�s side.

Proposition 4 Suppose there is entry on the women�s side. Then, for all F ,

1. men�s total signalling increases if G is DFR,

2. women�s total signalling increases for all G,

11 In this case the e¤ort of high types gets larger and the e¤ort of low types gets smaller.
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3. men�s total welfare increases for all G,

4. women�s total welfare increases if G is DFR.

Entry by women has similar e¤ects to entry by men, except that it leads

to a higher number of matches, and hence a higher number of prizes for men.

This increase has, ceteris paribus, a positive e¤ect on the men�s signalling ef-

fort. Therefore, even if the distribution of women�s types G is IFR, men�s total

signalling may increase due to the presence of an additional woman.

5 The e¤ects of changes in the distributions of

attributes

In this section we study how output, signalling, and welfare on both sides of the

market are a¤ected by changes in the distribution of agents�attributes on one

side of the market. We also compare the signalling activity and welfare of men

and women in a given, �xed setting.

5.1 The e¤ects of increasing heterogeneity

De�nition 2 1. A function � is star-shaped on [0; �) if �(x)=x is increasing

in x.

2. Let X(Z) have distributions F (H) such that F (0) = H(0) = 0: Distri-

bution F is star-shaped with respect to H if the function H�1F (x) is

star-shaped (that is, H�1F (x)=x is increasing for x � 0) .

3. Distribution F is convex with respect to H if the function H�1F (x) is

convex on the support of F:

Consider two distributions F and H such that F (0) = H(0) = 0: Since

convex functions � on [0; �) such that �(0) � 0 are star-shaped, we obtain that
H�1F (x) is convex implies H�1F (x) is star-shaped. If H is the exponential

distribution then H�1F (x) is convex (concave) is equivalent to F being IFR

(DFR), and H�1F (x) (F�1H(x)) star-shaped is equivalent to F being IFRA

(DFRA).

A crucial property is single crossing : IfH�1F (x) is star-shaped then 1�F (x)
crosses 1 �H(x) at most once, and then from above, as x increases from 0 to

1: In particular, if F and H have the same mean, then a crossing must occur,

and F has a smaller variance than H:

14



In the Appendix A we detail the consequences of single-crossing on order

statistics - these are the mathematical results used in this part. We can now

state:

Proposition 5 Let H;F be two distributions of the men�s attributes with the

same expectation, and assume that H�1F (x) is star-shaped : Let G be the dis-

tribution of women�s attributes. Then the following hold:

1. For any n � k, and for any G, total output in assortative matching under

F is smaller than total output under H:

2. For n = k; and for G IFR, men�s total signalling under F is higher than

under H:

3. For any n � k; and for any G, women�s total signalling under F is lower

than under H.

4. For any n � k; and for any G, men�s total welfare in the signalling equi-

librium under F is smaller than men�s total welfare under H:

5. For n = k; and for G IFR (DFR), women�s total welfare under F is

higher (lower) than under H: For any n � k and for G DFR, women�s

total welfare under F is lower than under H:

It is interesting to observe that increased heterogeneity on one side of the

market (say men) always leads to higher expected output and to higher total

welfare on the same side of market (point 1,4 above),12 while this is not neces-

sarily true for the other side (point 5). The reason is as follows: While expected

output increases, total women signalling also increases (point 3).13 But the in-

crease in output is relatively large if the women�s distribution G is DFR, thus

o¤setting the increase in women�s signalling, while the increase in output is

relatively small if G is IFR, in which case women�s welfare may go down.

In many applications (e.g., biological studies of sexual selection, or devel-

opment studies about marriage markets in rural societies14) it is of interest to

compare the signalling activity on both sides of the market.
12Men with high types face less intensive competition under H: If G is IFR, the marginal

gains from winning a better women are small for these men. This reduces the signalling e¤orts

for high types, and vice versa for low types.

13Both the expected quality of high-ranked men and the di¤erences between high-ranked

men and low-ranked men are higher under H. Therefore, under H, the e¤ort of high-type

women is larger and the the e¤ort of low-type women is smaller, leading to higher total

signalling by women:
14Consider, for example, an insightful excerpt taken from the empirical study of marriage

in rural Ethiopia due Fafchamps and Quisumbing (2005): "if the di¤erence between grooms is
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Proposition 6 1. Let n = k and let G�1F be star-shaped: Then men�s sig-

nalling e¤ort is higher than women�s. Thus, women are better-o¤ than

men.

2. Let either F or G be IFR, and let G�1F be convex. Then, for any n � k;

men�s signalling e¤ort is higher than women�s

The above conditions involve the function G�1F . This function has an im-

portant meaning here: it describes the matching function of assortative match-

ing in the continuous version of our model (see Section 7).

A simple and more intuitive corollary is as follows:

Corollary 1 Let F be convex and G be concave. Then, for any n � k; men�s

total signalling e¤ort is higher than women�s.

If F has an increasing density while G has a decreasing density, then men

with relatively high types face a sti¤er competition than those with relatively

low types, while the opposite holds for women. Note that individual e¤orts are

monotonically increasing in types. Therefore, when F gets more convex and

G more concave; total men�s signalling tends to increase relative to women�s

total signalling. In addition, if F is convex and G concave, the di¤erences in

successive order statistics is decreasing on the men�s side, and increasing on the

women�s side (see Boland et al., 2001). This implies that the marginal gains in

terms of winning a better matching partner are larger with respect to highly-

ranked men than highly-ranked women, which tends to further increase total

men�s e¤ort relative to women�s.

Remark 1 We have mentioned in Section 2 that our results can be easily ex-

tended to models where the production function has the form 2�(x)�(y) where �

and � are strictly increasing, non-negative functions. Here is an example derived

from the above observations: consider the Cobb-Douglas production 2�(x)�(y)

= 2xcyd; c; d > 0: Let n = k; and assume that men�s and women�s attributes

are uniformly distributed on [0; 1]. This model is equivalent to the one where

the types are ex; ey; the production function is 2exey , and the distributions of at-
tributes are eF (ex) = ex1=c; eG(ey) = ey1=d: Thus, men signal more and are worse-o¤
if c � d:

large relative to the di¤erence between brides, brides must bring more to fend o¤ competition

from lower ranked brides who wish to improve their ranking"
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5.2 The e¤ects of overall increases in quality

We now assume that the distribution of men�s attributes F (random variable

X) changes to another distribution F (random variable Z); such that X �hr Z:
In particular, EX � EZ; and EX(i;n) � EZ(i;n) , i = 1; 2; :::n: Thus, there is

an unambiguous increase in the quality of men. The e¤ects on expected output

, men�s total signalling, and women�s total welfare are also unambiguous: all

these measures are higher under H than under F because women receive better

prizes and because competition among men is stronger.15 The e¤ect on men�s

total welfare and women total signalling are more subtle, and some of them

cannot occur in large populations (see Section 7).

Proposition 7 Let X;Z two random variables with distributions F and H;

respectively, such that X �hr Z: Let G be any distribution of women�s attributes.
Then the following hold:16

1. For any n � k, total output in assortative matching under F is smaller

than total output under H:

2. For any n � k, total men�s signalling under F is smaller than total men�s

signalling under H:

3. For any n � k, total men�s welfare under F is smaller than total men�s

welfare under H if either F or H are DFR.

4. For any n � k, total women�s signalling under F is smaller than total

women�s signalling under H if either F or H are DFR.

5. For any n � k, total women�s welfare under F is smaller than total

women�s welfare under H:

6 Assortative versus random matching

We now compare the equilibrium outcome of assortative matching with sig-

nalling to the outcome where agents are matched randomly. Random matching

can also be seen as the outcome of a completely pooling equilibrium in our

signalling model.

15Under H; the men with high types face more intensive competition and therefore their

e¤ort is larger, while the e¤ort of low types is smaller.
16Note that points 1,2,5 also hold for increases in the �rst-order (or standard) stochastic

sense.
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While the matching surplus generated through assortative matching is clearly

larger than the one obtainable through random matching, assortative match-

ing involves the cost of signalling e¤orts. The main questions are: 1) Under

which conditions is the increase in total expected output achieved by assorta-

tive matching completely o¤set by the increased cost of signalling ? 2) Which

types prefer random matching, and which types prefer assortative matching

with signalling ?

6.1 Total welfare

Total welfare in random matching is given by:

W r(n; k) = 2min(n; k)EX � EY (8)

We obtain the following result:

Proposition 8 1. Suppose that n = k. Then random matching is welfare

superior (inferior) to assortative matching based on signalling if F and G

are IFRA (DFRA).

2. For any n � k, assortative matching based on signalling is welfare superior

to random matching if F and G are DFR.

In particular, for n = k; random matching and assortative matching with

signalling are welfare-equivalent if the distributions of agents�types are expo-

nential. The results in Section 7 will provide some intuition for the above result

in terms of a measure of the heterogeneity in the populations.

6.2 Individual welfare

We have compared above total welfare from assortative matching with the total

welfare from random matching. We now make this comparison from each agent�s

point of view.

Obviously, agents with low types prefer random matching. To see this,

consider a man with a very low type x. This man�s expected utility under

random matching is xEY . On the other hand, this man�s expected utility

from assortative matching is approximately xEY(1;n) minus his bid, since he

is going to match almost surely with the woman with the lowest type. Since

EY > EY(1;n); such a man prefers the random matching.
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Lemma 1 For any distributions F and G; and for any n � k; there exists at

most one cuto¤ type x̂ 2 [0; �F ] such that all men x < x̂ are better-o¤ under

random matching, while all men x � x̂ are better-o¤ under assortative matching

based on signalling (and analogously for women).

From Proposition 8 we know that assortative matching with signalling yields

a higher total welfare than random matching if F and G are DFR. Together

with the above Lemma, this implies that, if F and G are DFR, there must exist

some types of agents that prefer assortative matching with signalling to random

matching, i.e., the cuto¤ points are interior.

Suppose now that F and G are not DFR, such that the cuto¤ de�ned in

Lemma 1 does not necessarily exist. The interesting question is now whether it

is possible that all agents, including those with high types, are better-o¤ under

random matching ? The answer is a¢ rmative, and is illustrated next:

Proposition 9 Let n = k; and assume that �F < 1: If F stochastically dom-

inates the uniform distribution on [0; �F ], then all types of men prefer random

matching to assortative matching based on signalling.17 Analogous results hold

for women.

7 Large populations

We now consider the continuous version where there are measures of men and

women, distributed according to F and G; respectively. Both measures are

normalized to one.18 Our analysis will focus on the connections between this

model and the discrete model analyzed so far.

Under assortative matching, a man with attribute x is matched with a

woman with attribute y =  (x) , where  (x) = G�1F (x) :

Expected output (and welfare) under randommatching is given by 2EXEY =

2(
R �F
0

xf(x)dx)(
R �G
0

yg(y)dy): Expected output under assortative matching is

given by 2
R �F
0

x (x) f(x)dx: The signalling activity that enable assortative

matching is characterized in the next proposition:

Proposition 10 1. In the continuous model, the equilibrium signalling func-

tion for men (women) in the side-symmetric signalling equilibrium is given

by �(x) =
R x
0
z 0 (z) dz ((y) =

R y
0
z'0 (z) dz, where ' =  �1):

17 If F is stochastically dominated by the uniform distribution, then some types of men

prefer random matching to the assortative matching with signalling.
18This is for simplicity. The generalization should be clear.
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2. Aggregate signalling (men + women) is always equal to
R �F
0

x (x) f(x)dx:

That is, exactly half the surplus from assortative matching is wasted through

signalling.

In the discrete case we showed that total signalling e¤ort is less than one half

output (see Proposition 2-4). Here perfect competition always drives signalling

up to precisely half output. As a consequence, several phenomena that occurred

in the discrete model cannot occur here. For example, recall that the e¤ects of

increasing the number of men on total welfare, or the e¤ects of overall increases

in the quality of men may be ambiguous if the distribution of men is not DFR

(see Proposition 3, Example 1, Proposition 7). In the continuous limit, both

these changes are equivalent,19 but their e¤ect is clear-cut: since total signalling

is tightly proportional to output, and since output goes up when the overall

quality of men increases, total welfare necessarily goes up. This observation

emphasizes that some caution is necessary when making arguments about small

markets.

An immediate application of the above result yields the comparison between

assortative and random matching in the continuous version:

Proposition 11 In the continuous model, assortative matching based on sig-

nalling is welfare superior (inferior) to random matching if

Cov(X; (X))

EX � E (X) � (�) 1

The above result can be more easily explained in the symmetric setting

where F = G. Let CV �
p
V ar (X)=EX be the coe¢ cient of variation of

F = G: A smaller CV means that types are less heterogeneous. Proposition 11

immediately yields:

Corollary 2 Let F = G: In this symmetric continuous model, assortative

matching based on signalling is welfare superior (inferior) to random match-

ing if CV �
p
V ar (X)=EX � (�) 1: In particular, assortative matching based

on signalling is welfare superior (inferior) to random matching if F is DFRA

(IFRA).

The last part of the corollary follows by Barlow and Proschan�s (1975) result

whereby CV � (�) 1 if F is DFRA (IFRA). Thus, the result of the continuous
19When men enter, and when men get stochastically better the expected values of the order

statistics increase, while the additional �number e¤ect� in the entry case is negligible in large

markets.
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model neatly �ts, and is stronger than the one obtained for the discrete model.

Note that CV = 1 for the exponential distribution. As in the discrete case with

equal numbers of men and women, total welfare in random matching equals

total welfare in assortative matching with signalling under this distribution.

It is intuitive that the di¤erence in expected output between assortative

matching and random matching gets smaller as the heterogeneity in the popu-

lation gets smaller. By Proposition 10, total signalling e¤orts are proportional

to output for any level of heterogeneity20 . Therefore, net welfare in assortative

matching eventually falls below the welfare level in random matching as the

level of heterogeneity gets smaller.

Remark 2 We have mentioned in the introduction that our insights delivers

immediate results for other, less general models: Here are two examples: 1)

Consider a setting where the attributes of one side of the market (say men)

are known. Then, signalling is only performed by one side, and the waste from

signalling is halved. Thus, assortative matching via signalling becomes more

attractive relative to random matching, and, by an argument similar to the one

in Corollary 2, we obtain that assortative matching is welfare superior (inferior)

to random matching if CV �
p
V ar (X)=EX � (�) 1=3: In particular, the two

alternatives are now equivalent for the distribution of attributes that is uniform

on a bounded interval. 2) Consider now a model with complete information,

without any signalling. Since signalling amounted to half output in the two-sided

incomplete information model, Corollary 2 basically says that for IFR (DFR)

distributions random matching yields an output that is more than half (less than

half) the output from assortative matching. In particular, the �blunt� coarse

matching analyzed by McAfee (2002) yields at least three-quarters of the output

in assortative matching for the class of distributions studied in that paper21 .

The above comparison of assortative and random matching in the continuous

model was obtained by a direct argument. But, the result was clearly related

to the one we previously obtained in the discrete version. What is the general

relation between the discrete model and the continuous model? We now show

how results in the continuous model can be obtained by considering the limit

in the discrete model as the number of agents goes to in�nity. We illustrate

20For example, consider a sequence of distribution functions converging to the Dirac distri-

bution on � <1: Observe that, as the distributions become more concentrated, the limiting
value is still half the limiting value of the expected output, and thus bounded away from zero.

Even when the probability that a potential matching partner is worse than � gets arbitrarily

small; agents still engage in signalling in order to prevent being matched with a low type.
21This is a subclass of the IFR distributions.
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this phenomenon by showing that average output, and average total signalling

e¤ort in the discrete model indeed converge to their continuous counterparts.

We focus below on the symmetric case where n = k; and F = G: Recall that in

the discrete case where n = k and F = G; total welfare is given by :

W (n; n) = 2
nX
i=1

(n� i+ 1)
�
EX(i;n) � EX(i�1;n)

�
EX(i;n) (9)

Proposition 12 Assume F = G; and n = k in the discrete model. For each n;

consider the side-symmetric signalling equilibrium yielding assortative matching,

and let n go to in�nity. Then, average (i.e., per pair) expected output, average

expected total signalling, and average expected total welfare in the discrete model

converge to expected output, expected signalling, and expected total welfare in the

continuous model.

8 Conclusion

We have studied two-sided matching models where privately informed agents on

each side are matched on the basis of costly signals. For the welfare analysis we

have assumed that signals are wasted. Our study reveals how welfare on both

sides of the market is a¤ected by changes in primitives of the model such as the

number of the agents, and the distributions of their attributes. In particular,

our analysis suggests that one cannot blindly apply to small markets insights

obtained from studies of large populations. We have also identi�ed conditions

under which assortative matching based on wasteful signalling is welfare superior

(inferior) to random matching. Thus, the e¤ects of policies that attempt to curb

wasteful signalling need to be carefully examined in each particular situation22 .

The analysis of markets with �nite numbers of agents on each side has been made

possible by the application of elegant results and methods from mathematical

statistics. We believe that the applications of these methods will be fruitful also

in other areas (such as double auctions). Finally, we hope that our model (or

some of its many possible variations) will be useful as a sound, theoretical basis

around which to organize observations in a variety of empirical studies, e.g., of

marriage, labor and education markets.

22Alternatively, this holds for policies that attempt to manipulate the rent accruing to a

third party, such as an intermediary (see Hoppe et al., 2005).
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9 Appendix A: Order statistics and sto-

chastic orders
De�nition 3 For any two non-negative random variables, X and Z; with dis-

tributions F and H and hazard rates �x and �z; respectively, X is said to be

smaller than Z in the hazard rate order (denoted as X �hr Z) if �x (s) � �z (s) ;

for all s � 0: X is said to be smaller than Z in the usual stochastic order (de-

noted as X �st Z) if F (s) � H (s) for all s � 0:

Theorem 2 (see Shaked and Shanthikumar ,1994):

1. If X and Z are two random variables such that X �hr Z; then X �st Z:

2. Let X1; X2; :::; Xn be independent random variables. Then:

� X(i;n) �hr X(i+1;n) for i = 1; 2; :::; n� 1;

� X(i�1;n�1) �hr X(i;n) for i = 2; 3; :::; n

� X(i;n�1) �hr X(i;n) for i = 2; 3; :::; n� 1:

With respect to order statistics, the basic consequence of single crossing for

random variables ordered by the star-shaped order is:

Theorem 3 (see Barlow and Proschan, 1966) Let X;Z two random variables

with distributions F;H respectively, such that F (0) = H(0) = 0; and such that

H�1F is star-shaped. Then:

1. The function !(i; n) = EX(i;n) �EZ(i;n) changes sign at most once when
i (n) increases and then from positive to negative (negative to positive), if

at all. If EX = EZ then a change of sign when i increases must occur.

2. The ratio EX(i;n)=EZ(i;n) is decreasing (increasing) in i (n).

3. The ratio EX(n�i;n)=EZ(n�i;n) is decreasing in n:

Many of our proofs rely on a conjunction of the above result with the fol-

lowing Lemma:

Theorem 4 (see Barlow and Proschan, 1966): Consider �i > 0; �i � 0; i =
1; 2; ; n; such that �i=�i is increasing in i: Then

Pn
1 ai�i=

Pn
1 �i �

Pn
1 ai�i=

Pn
1 �i

for any a1 � a2::: � an:

Two simple, but important consequences are:
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Theorem 5 (see Barlow and Proschan, 1966)

1. If H�1F is star-shaped, and if EX = EZ then

nX
i=1

ai[(n�i+1)(EX(i;n)�EX(i�1;n))] �
nX
i=1

ai[(n�i+1)(EZ(i;n)�EZ(i�1;n))]

2. If F is IFRA (DFRA) then:

nX
i=1

ai[(n� i+ 1)(EX(i;n) � EX(i�1;n))] � (�)E
nX
i=1

ai

We will also use the following generalization of Barlow and Proschan�s re-

sults:

Theorem 6 (see Hu and Wei, 2001) De�ne U(j;i;n) � X(j;n) �X(i;n) for 0 �
i < j � n: Let F be DFR (IFR). Then U(j�1;i�1;n�1) �hr (�hr)U(j;i;n):

Theorem 7 (see Khaledi and Kochar, 1999):

1. If X �hr Z and either X or Z is DFR, then (n�i+1)(X(i;n)�X(i�1;n)) �st
(n� i+ 1)(Z(i;n) � Z(i�1;n)); i = 1; 2; 3; :::; n:

10 Appendix B: Proofs
Proof of Proposition 1. We �rst show that the function � in (1) is strictly

monotonically increasing. Note that (1) can be written as

� (x) =

Z x

0

(
n�1X

i=n�k+1
f(i;n�1) (s)

�
EY(k�n+i+1;k) � EY(k�n+i;k)

�)
sds

+

Z x

0

f(n�k;n�1) (s)EY(1;k)sds

Taking the derivative with respect to x yields

�0 (x) =
n�1X

i=n�k+1
f(i;n�1) (x)

�
EY(k�n+i+1;k) � EY(k�n+i;k)

�
x

+f(n�k;n�1) (x)EY(1;k)x

which is strictly positive because Y(k�n+i+1;k) �st Y(k�n+i;k) .
Next, we check whether the second-order condition is satis�ed. Integrating

the RHS of (1) by parts, yields
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� (x) = x
n�1X

i=n�k+1
EY(k�(n�i);k)

�
F(i�1;n�1) (x)� F(i;n�1) (x)

�
+xF(n�1;n�1) (y)EY(k;k)

�
Z x

0

(
n�1X

i=n�k+1
EY(k�(n�i);k)

�
F(i�1;n�1) (s)� F(i;n�1) (s)

�)
ds

�
Z y

0

F(n�1;n�1) (s)EY(k;k)ds

= x
nX

i=n�k+1
Fni (x)EY(k�(n�i);k) �

Z x

0

nX
i=n�k+1

EY(k�(n�i);k)F
n
i (s) ds

Let z = ��1 (b) be the type for which the equilibrium e¤ort is b: The expected

payo¤ of a man with type x from exerting e¤ort � (z) is thus given by:

U (b; x) =
nX

i=n�k+1

�
F(i�1;n�1) (z)� F(i;n�1) (z)

�
xEY(k�(n�i);k) � � (z)

=
nX

i=n�k+1
Fni (z)EY(k�(n�i);k) (x� z)

+

Z z

0

nX
i=n�k+1

EY(k�(n�i);k)F
n
i (s) ds

Hence, the di¤erence between the expected payo¤s of type x when he exerts

e¤orts of � (x) and � (z) is:

U (� (x) ; x)� U (� (z) ; x) =
Pn

i=n�k+1 F
n
i (z)EY(k�(n�i);k) (z � x)

�
R z
x

Pn
i=n�k+1EY(k�(n�i);k)F

n
i (s) ds

(10)

Since � is strictly increasing, the functionH(s) =
Pn

i=n�k+1 F
n
i (s)EY(k�(n�i);k)

increases in s and therefore the di¤erence in (10) is always positive.

Proof of Proposition 2. 1) Substituting (1) into (2) yields:

Sm (n; k) = n

Z �F

0

Z x

0

n�1X
i=n�k+1

f(i�1;n�1) (s)EY(k�(n�i);k)sdsf (x) dx

�n
Z �F

0

Z x

0

n�1X
i=n�k+1

f(i;n�1) (s)EY(k�(n�i);k)sdsf (x) dx

+n

Z �F

0

Z x

0

f(n�1;n�1) (s)EY(k;k)sdsf (x) dx (11)
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Integrating the �rst plus the third terms of (11) by parts and rearranging

terms, we obtain

n

Z �F

0

Z x

0

nX
i=n�k+1

f(i�1;n�1) (s)EY(k�(n�i);k)sdsf (x) dx

= n

Z �F

0

[1� F (x)]
nX

i=n�k+1
xf(i�1;n�1) (x)EY(k�(n�i);k)dx

= n

Z �F

0

nX
i=n�k+1

n� i+ 1
n

xf(i�1;n) (x)EY(k�(n�i);k)dx

=
nX

i=n�k+1
(n� i+ 1)EX(i�1;n)EY(k�(n�i);k)

Similarly, integrating the second term of (11) by parts, we obtain

�n
Z �F

0

Z x

0

n�1X
i=n�k+1

f(i;n�1) (s)EY(k�(n�i);k)sdsf (x) dx

= �n
Z �F

0

[1� F (x)]
n�1X

i=n�k+1
xf(i;n�1) (x)EY(k�(n�i);k)dx

= �n
Z �F

0

n�1X
i=n�k+1

n� i
n

xf(i;n) (x)EY(k�(n�i);k)dx

=
nX

i=n�k+1
(n� i)EX(i;n)EY(k�(n�i);k)

Collecting terms, yields:

Sm (n; k)

=
nX

i=n�k+1

�
(n� i+ 1)EX(i�1;n) � (n� i)EX(i;n)

�
EY(k�(n�i);k) (12)

=
nX

i=n�k+1
(n� i+ 1)EX(i�1;n)

�
EY(k�n+i+1;k) � EY(k�n+i;k)

�
2) Analogous to the above.

3) Follows from the de�nition of gross surplus and points 1, 2 above.

4) Note that the only di¤erence in the expressions for W (n; k) on the one

hand, and Sm (n; k) + Sw (n; k) on the other, is that the normalized spacings

appearing in W (n; k) are multiplied by a higher weight, corresponding to the
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expectation of a higher order statistic. Thus

Sm (n; k) + Sw (n; k) � W (n; k),

W (n; k) + Sm (n; k) + Sw (n; k) � 2W (n; k),

2
nX

i=n�k+1
EX(i;n)EY(k�(n�i);k) � 2W (n; k),

nX
i=n�k+1

EX(i;n)EY(k�(n�i);k) � W (n; k) (13)

as desired.

Proof of Proposition 3. 1) We rewrite total men�s signalling, j = i �
(n� k) ; as:

Sm (n; k) =

kX
j=1

(k � j + 1)
�
EY(j;k) � EY(j�1;k)

�
EX(j+n�k�1;n) (14)

Note that EY(j;k) �st EY(j�1;k). Note further that by Theorem 2, EX(j+n�k�1;n)

is stochastically increasing in n:

2) We rewrite total women�s signalling, j = i� (n� k) ; as:

Sw (n; k) =
kX
j=1

(k � j + 1)
�
EX(j+n�k;n) � EX(j+n�k�1;n)

�
EY(j�1;k) (15)

Thus, applying Theorem 6 yields statement 2.

3) Men�s total welfare can be written as:

Wm (n; k) =

kX
j=1

(k � j + 1)
�
EX(j+n�k;n) � EX(j+n�k�1;n)

�
EY(j;k) (16)

which is is similar to men�s signalling (expression (15)). The proof is analogous

to that at point 2 above, and we omit it here.

4) Women�s total welfare can be written as:

Ww (n; k) =
kX
j=1

(k � j + 1)
�
EY(j;k) � EY(j�1;k)

�
EX(j+n�k;n) (17)

which is is similar to men�s signalling (expression (14)). The proof is analogous

to that at point 1 above, and we omit it here.

Proof of Proposition 4. 1) Men�s total signalling is given by (14). Thus,
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Sm (n; k) =
kX
j=1

(k � j + 1)
�
EY(j;k) � EY(j�1;k)

�
EX(j+n�k�1;n)

=
k+1X
i=2

(k � i+ 2)
�
EY(i�1;k) � EY(i�2;k)

�
EX(i+n�k�2;n)

Sm (n; k + 1) =
k+1X
j=1

(k � j + 2)
�
EY(j;k+1) � EY(j�1;k+1)

�
EX(j+n�k�2;n)

=
k+1X
j=2

(k � j + 2)
�
EY(j;k+1) � EY(j�1;k+1)

�
EX(j+n�k�2;n)

+(k + 1)EY(1;k+1)EX(n�k�1;n)

De�ne EV(i;k) � EY(i;k) � EY(i�1;k): Then we get:

Sm (n; k + 1)� Sm (n; k)

=
k+1X
j=2

(k � j + 2)
�
EV(j;k+1) � EV(j�1;k)

�
EX(j+n�k�2;n)

+(k + 1)EY(1;k+1)EX(n�k�1;n)

Note that the �rst term of the RHS is positive if G is DFR and negative if G is

IFR, which follows from Theorem 6. This yields the result as stated.

2)Women�s total signalling is given by (4). The stated result follows imme-

diately from Theorem 2.

3) Men�s total welfare (expression (3)) is similar to women�s total signalling

(expression (4). The proof is analogous to the one for women�s total signalling

at point 2 above, and we omit it here.

4)Women�s total welfare (expression (5)) is similar to men�s total signalling

(expression (2). The proof is analogous to the one for men�s total signalling at

point 1 above, and is omitted.

Proof of Proposition 5 1) Let ai = �EY(k�n+i;k) for i = n; n� 1; ::n� k+
1;and ai = 0 for i = n�k; n�k�1; :::; 1: Then a1 � a2::: � an;and output under

F (H) is given by
Pn

i=1 aiEX(i;n) (
Pn

i=1 aiEZ(i;n)). By Theorem A2-(2), we

know that EZ(i;n)=EX(i;n) is increasing in i: By assumption, EX = EZ : This

implies
Pn

i=1EX(i;n) =
Pn

i=1EZ(i;n). Setting �i = Z(i;n) and �i = X(i;n) in

Theorem A3 we get
Pn

i=1 aiEZ(i;n) �
Pn

i=1 aiEX(i;n) . Since for all i; ai � 0
, the wished result follows.

2) Men�s total signalling is given by (2). Consider �rst the case n = k. Set

�i = EZ(i;n) and �i = EX(i;n); i = 1; 2; ::n; and ai = (n�i)(EY(i+1;n)�EY(i;n))
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, i = 1; 2; ::n � 1; and an = 0: If the distribution of women is IFR, we obtain

that a1 � a2:: � an; and the result follows from Theorem A4-(1).

3) Women�s total signalling (expression (2)) is similar to men�s total welfare

(expression (3)) . The proof is analogous to the one for men�s welfare at point

4 below, and we omit it here.

4) Men�s total welfare is given in (3). The result follows directly from

Theorem A4-(1) by setting ai as in point 1 above.

5)Women�s total welfare is given in (5). Assume �rst that n � k: Set �i and

�i as in point 1 above, and set ai = �(n� i+ 1)(EY(k�n+i;k) � EY(k�n+i�1;k)

If G is DFR, then a1 � a2::: � an; and the result follows from Theorem A3.

Assume now n = k: Set �i and �i as in point 1 above, and set ai = (n� i+
1)(EY(i;n) �EY(i�1;n)) , i = 1; 2; ::n: If G is IFR, then a1 � a2::: � an; and the

result follows from Theorem A3.

Proof of Proposition 6. 1) Using (2) and (4), we get:

Sm (n; n)�Sw (n; n) =
nX
i=1

(n� i+ 1) (EY(i;n)EX(i�1;n)�EY(i�1;n)EX(i;n)) � 0

The last inequality follows from Theorem A2-(2).

2) From Proposition 3 we know that:

(i) for any n � k; and any F;G; Sm (n; k) � Sm (k; k) ;

(ii) for any n � k; for any G; and for F IFR, Sw (n; k) � Sw (k; k)

Since G�1F convex implies G�1F star-shaped, the result follows directly

from 1) and (i), (ii) if F is IFR.

Assume now that G is IFR. This means that H�1G convex, where H is the

exponential distribution. Thus, H1GG�1F = H�1F is convex (since it is a

composition of increasing convex functions), which means that F is IFR. The

result follows as above.

Proof of Proposition 7: Points 1, 2 , 5 follow immediately by inspection of

the relevant expressions in Proposition2. Points 3,4 follow by these expressions

and Theorem A6 in Appendix A.

Proof of Proposition 8 1) Welfare in random matching can be written as:

W r(n; n) = 2nEX � EY = nEX

Pn
i=1EY(i;n)

n
+ nEY

Pn
i=1EX(i;n)

n
(18)

= EX
nX
i=1

EY(i;n) + EY
nX
i=1

EX(i;n) (19)
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Welfare in assortative matching is given by (6). Let ai = �EY(i;n), and note
that ai is decreasing in i: 23 Applying Theorem A4-(2) yields: if F is IFRA

(DFRA), then

�
nX
i=1

EY(i;n)[(n� i+ 1)
�
EX(i;n) � EX(i�1;n)

�
] � (�)� EX

nX
i=1

EY(i;n) (20)

Multiplying by (�1); we obtain: if F is IFRA (DFRA), then

nX
i=1

EY(i;n)[(n� i+ 1)
�
EX(i;n) � EX(i�1;n)

�
] � (�)EX

nX
i=1

EY(i;n) (21)

Similarly, we obtain: if G is IFRA (DFRA), then

nX
i=1

EX(i;n)[(n� i+ 1)
�
EY(i;n) � EY(i�1;n)

�
] � (�)EX

nX
i=1

EX(i;n) (22)

The combination of (21) and (22) completes the proof.

2) The result for the general case n � k follows by applying the entry results

of Proposition 3: Recall that, by Proposition 3, entry by men increases welfare

in assortative matching based on signalling if F is DFR (and hence DFRA).

The result follows by noting that entry on the long side does not a¤ect welfare

from random matching since the number of matched pairs remains constant.

Proof of Lemma 1 Let Ua (x) ; Ur (x) denote the expected utility of type

x under assortative matching with signalling, and under random matching, re-

spectively.

Note that Ua (x) = maxs
�Pn

i=n�k+1 F
n
i (s)xEY(k�n+i;k) � � (s)

	
is an in-

creasing convex function (since it is the maximum of linear increasing functions),

while Ur is an increasing linear function with slope EY: Thus, these functions

can cross at most once. Note further that the derivative of Ua (x) at x = 0 is

dUa (x)

dx

����
x=0

=

nX
i=n�k+1

Fni (0)EY(k�n+i;k) � EY(1;k) < EY

where the �rst inequality follows either by
Pn

i=n�k+1 F
n
i (0)EY(k�n+i;k) = 0 if

n > k; (since Fni (0) = 0 if i > 1) or by
Pn

i=n�k+1 F
n
i (0)EY(k�n+i;k) � EY(1;n)

for n = k; (since Fn1 (0) = lim"!0 F (")
" � 1): Thus, Ua (x) � Ur (x) in a

neighborhood of zero, and the wished result follows.

23Please note that Barlow and Proschan (1966) contains a crucial typo here, and they mix

(only at their point (iii) ) IFRA and DFRA.
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Proof of Proposition 9 By Lemma 1, it is clear that if the man with the

highest type prefers random matching, then all other types of men prefer random

matching as well ( and analogously for women). Under assortative matching

based on signalling, the expected utility of the type � man is

Ua(�) = �EY(n;n) �
n�1X
i=1

EX(i;n�1)
�
EY(i+1;n) � EY(i;n)

�
The expected utility of this type under random matching is

Ur(�) = � � EY = �

n
(
nX
i=1

EY(i;n))

If F stochastically dominates (is stochastically dominated by) the uniform dis-

tribution, we obtain that EX(i;n�1) � (�)� in : Then

Ua(�) � (�) �EY(n;n) �
�

n

n�1X
i=1

i
�
EY(i+1;n) � EY(i;n)

�
=

�

n
(
nX
i=1

EY(i;n)) = Ur(�)

Proof of Proposition 10 1) Consider men�s types x; x̂; x > x̂; with equi-

librium bids �(x); �(x̂): In equilibrium, type x is assortatively matched with

type  (x), and x̂ is matched with  (x̂) : Type x should not pretend that he is

x̂ (thus being matched with  (x̂) and paying �(x̂)), and vice-versa for type x̂.

This yields:

x (x)� �(x) � x (x̂)� �(x̂)

x̂ (x̂)� �(x̂) � x̂ (x)� �(x)

Combining the above and dividing by x� x̂; gives:

x̂ (x)� x̂ (x̂)
x� x̂ � �(x)� �(x̂)

x� x̂ � x (x)� x (x̂)
x� x̂

Taking the limit x̂! x gives �0(x) = x 0 (x) : Together with �(0) = 0; this

yields �(x) =
R x
0
z 0 (z) dz . Letting ' =  �1; we obtain (y) =

R y
0
z'0 (z) dz

analogously.

2) Total signalling e¤ort by men and women is given by:
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Sm + Sw =

Z �F

0

Z x

0

z 0 (z) dzf(x)dx+

Z �G

0

Z y

0

z'0 (z) dzg (y) dy

=

Z �F

0

�
x (x)�

Z x

0

 (z) dz

�
f(x)dx

+

Z �G

0

�
' (y) y �

Z y

0

' (z) dz

�
g (y) dy

=

Z �F

0

�
x (x)�  (x) 1� F (x)

f (x)

�
f(x)dx

+

Z �G

0

�
' (y) y � ' (y) 1�G (y)

g (y)

�
g (y) dy

where the last equality follows by integration by parts.

Using y =  (x) , ' ( (x)) = x and G( (x)) = F (x) we obtain:

Sm + Sw

=

Z �F

0

�
x (x)�  (x) 1� F (x)

f (x)
+ x (x)� x 0 (x) 1� F (x)

f (x)

�
f(x)dx

= 2

Z �F

0

x (x) f(x)dx�
Z �F

0

�
 (x) + x 0 (x)

� 1� F (x)
f (x)

f(x)dx

=

Z �F

0

x (x) f(x)dx

where the last equality follows from integrating
R �F
0

x (x) f(x)dx by parts.

The last term in the chain of equalities equals of course half gross output in the

continuum model.

Proof of Proposition 11 By Proposition 10, total welfare in assortative

matching base don signalling is
R �
0
x (x) f(x)dx: Thus, assortative matching

with signalling is welfare superior (inferior) to random matching if:Z �

0

x (x) f(x)dx � [�] 2
Z �

0

xf (x) dx

Z �

0

yg(y)dy ,

E(X (X)) � [�] 2EX � EY ,

E(X (X)) � [�] 2EX � E (X),
Cov(X (X))

EX � E (X) � [�] 1

(Note that EY = E (X) ; the proof uses the well-known fact that for any

random variable Z with cumulative distribution H, EZ =
R 1
0
H�1 (z) dz.)
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Proof of Proposition 12. 1) Consider �rst gross total output. In the discrete

model, gross output is then given by:

2
nX
i=1

[
�
EX(i;n))

�2
= 2(

nX
i=1

EX2
(i;n))�

nX
i=1

V ar
�
X(i;n)

�
)

= 2(E

 
nX
i=1

X2
(i;n)

!
�

nX
i=1

V ar
�
X(i;n)

�
)

= 2(E

 
nX
i=1

X2
i

!
�

nX
i=1

V ar
�
X(i;n)

�
)

= 2(nEX2 �
nX
i=1

V ar
�
X(i;n)

�
)

where the second equality follows from the independence of attributes, the third

is a rearrangement of summands, and last one follows by the well-known Wald�s

Identity (see David and Nagaraja, 2003). Thus, for average gross output, we

obtain that:

lim
n!1

2

n

nX
i=1

[
�
EX(i;n)

�2
= 2EX2 � lim

n!1

2

n

nX
i=1

V ar
�
X(i;n)

�
= 2EX2 = 2

Z �F

0

x2f(x)dx

The second to last equality follows since limn!1
2
n

Pn
i=1 V ar

�
X(i;n)

�
= 0 ,

which follows, for example, by David and Johnson�s approximation (see Arnold

and Balakrishnan, 1989):

V ar
�
X(i;n)

�
'

i(n+1�i)
(n+1)2 [dF

�1( i
n+1 )]

2

n+ 2
+

c2
(n+ 2)2

+
c3

(n+ 2)3
:::

where ci are uniformly bounded constants.

2) For the other parts it is enough to show that net welfare in the discrete

model (output less bids) converges to
R �F
0

x2f(x)dx: Net average welfare is given

by:

W a =
2

n

nX
1

(n� i+ 1)EX(i;n)(EX(i;n) � EX(i�1;n))

=
2(n+ 1)

n

nX
1

(1� i

n+ 1
)EX(i;n)(EX(i;n) � EX(i�1;n))

It is well-known that, for large n, EX(i;n) is approximated by F�1(
i

n+1 )

(see David and Nagaraja, 2003). Thus, we obtain:

W a ' 2(n+ 1)

n

nX
1

(1� i

n+ 1
)(F�1(

i

n+ 1
)[F�1(

i

n+ 1
)� F�1( i� 1

n+ 1
)]
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Without the term 2(n+1)
n ; the RHS is precisely a Riemann-Stieltjes sum of

the type �d[(1 � x)F�1(x) ; F�1(x)] where d is the partition of [0; 1] given

by 1
n+1 ;

2
n+1 ; :::

n
n+1 : Since F is strictly increasing, F and F�1 have bounded

variation. Thus, we obtain:

lim
n!1

f2(n+ 1)
n

nX
1

(1� i

n+ 1
)(F�1(

i

n+ 1
)[F�1(

i

n+ 1
)� F�1( i� 1

n+ 1
)]g

=

Z 1

0

(1� x)F�1(x)dF�1(x)

= 2

Z �F

0

((1� F (u))udu

where the last line follows by the change of variable x = F (u):

Finally we have :

2

Z �F

0

(1� F (u)udu = 2[

Z �F

0

udu�
Z �F

0

F (u)udu]

= 2f�
2

2
� [u

2

2
F (u) j�F0 �

Z �F

0

u2

2
f(u)du]g

= 2[
�2

2
� �2

2
+
1

2

Z �F

0

u2f(u)du]

=

Z �F

0

u2f(u)du
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