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Abstract

This paper develops an axiomatic theory of decision making under uncertainty that

dispenses with the state space. The results are subjective expected utility models with

unique, action-dependent, subjective probabilities, and a utility function defined over

wealth-effect pairs that is unique up to positive linear transformation.
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1 Introduction

The distinguishing characteristic of decision making under uncertainty is that the choice of

a course of action, by itself, does not always determine a unique outcome. To formalize

this indeterminacy, or lack of advance knowledge of the outcome of alternative courses of

action, Savage (1954) introduced the concept of states of the world, that is, “a description

of the world so complete that, if true and known, the consequences of every action would be

known” (Arrow [1971], p. 45). In the wake of Savage’s seminal work, the state space (that

is, the set of all states of the world) became a cornerstone of modern theories of decision

making under uncertainty. However, careful examination of the concept of state of the world

reveals that the depiction of the relevant state space is often unintuitive and too complex

to be compatible with decision makers’ perception of choice problems. Doubt about the

relevance of state of the world as a general analytical concept and its applicability is the

main motivation behind this work.

In this paper I introduce an alternative analytical framework and a new subjective ex-

pected utility theory of decision making under uncertainty that avoid the use of a state

space. Moreover, within the new analytical framework I develop a theory of decision mak-

ing under uncertainty that is capable of accommodating considerations of moral hazard and

effect-dependent utility of wealth in individual choice-behavior.1

The case against the general applicability of the notion of states of the world is detailed in

1The meaning of the term effect is made clear below.
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the next section. The formal theory is presented in Section 3. Section 4 contains a discussion

of the meaning of subjective probabilities. Concluding remarks appear in Section 5. The

proofs are given in Section 6.

2 On the Meaning of States of the World

Following Savage (1954) it is customary to formulate the problem of decision making un-

der uncertainty invoking states and consequences as primitive concepts and acts, that is,

functions from the set of states to the set of consequences, as a derived concept. Once

the framework is fixed, however, states of the world may be interpreted, consistently with

Arrow’s (1981) definition, as mappings from the set of acts, to the set of consequences.

By definition the states of the world are mutually exclusive and jointly exhaustive. More-

over, the states must be defined in a way that their likely realization must not be affected by

the decision maker’s choice of action, and the valuation of the consequences be independent

of the state in which they may be received. Finally, for it to be a meaningful scientific con-

cept, the state space must be independently observable. In other words, it should be possible

to reconstruct, on the basis of a decision maker’s observed choices, the unique state-space

underlying his decisions.2 Note that the notion of the state space, advocated by Savage

(1954), presumes that decision makers believe that they know the world in which they live.3

2Machina (2003) offers a detailed discussion of this and related issues.
3That is what is meant by the requirement that states be jointly exhaustive.
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As a result, no amount of evidence, with Bayesian updating, would lead the decision maker

to conclude that his original image of the world was incomplete.4

There are situations in which the relevant states of the world correspond to observable

physical phenomena and have a natural, intuitive, and, most important, objective meaning.

For example, the uncertainty regarding the consequences of installing or not installing a

lightning rod is resolved once it is known whether the house is struck by lightning. Thus a

lightning strike may be regarded as a state of the world (or a state of nature) whose likely

occurrence is independent of whether or not a lightning rod is installed. In this instance, the

portrayal of the state space has a clear, objective interpretation, and it makes sense to treat

it as a primitive concept.

Situations in which the state space lends itself to such straightforward interpretations are

rare. Often the distinction between states and consequences is blurred and frequently the

likely realization of what seems like a natural definition of states for the problem at hand is

not independent of the choice of the action. Moreover, in many instances, the state space is

too large and complex to be compatible with the limited cognitive ability of decision makers

to grasp, let alone be invoked in the decision-making process. In such instances, as the

following examples illustrate, the notion of states of the world as an uncertainty-resolving

device seems unintuitive, non-compelling, and outright useless, for the purpose of obtaining

4Gilboa (2003) illustrates this point with Newcombe’s paradox. The same issue is discussed in Machina

(2003).
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a behavioral definition of subjective probabilities.5

Example 1. In a letter to Savage, from January 1971, Aumann questions "the very

possibility of defining this notion [subjective probability] — in any way — via preference."

(Drèze [1987], p. 77) To make his point Aumann describes a man who loves his wife very

much and without whom his life is less “worth living.” The wife falls ill and, if she is to

survive, she must undergo a routine yet dangerous operation. Suppose that the husband is

offered a choice between betting $100 on his wife’s survival or on the outcome of a coin flip.

In this scenario, there are four states, corresponding to the different possible combinations of

outcomes of the operation and those of the coin flip. However, even if the husband believed

that his wife has an even chance of surviving the operation he may still rather bet (that is,

strongly prefer to bet) on her survival. This is because winning $100 if she does not survive

is somehow worthless. Betting on the outcome of a coin flip means that he might win in

a situation in which he will not be able to enjoy it. Aumann’s objection is based on the

presumption, that seems quite compelling in the situation described, that the valuation of

the consequences is not independent of the states. In fact, Aumann argues that the notion

of states and consequences are confounded to the point that there is nothing that one may

call a consequence, that is, something whose value is state independent.

Savage responded to Aumann’s criticism in these words:

“The difficulties that you mention are all there; ... I believe that they are serious

5For additional examples and comments, see Gilboa and Schmeidler (2001), Ch. 2.

5



but am prepared to live with them until something better comes along. The

theory of personal probability and utility is, as I see it, a sort of framework into

which I hope to fit a large class of decision problems. In this process, a certain

amount of pushing, pulling, and departure from common sense may be acceptable

and even advisable.... To some - perhaps to you - it will seem grotesque if I say

that I should not mind being hung so long as it be done without damage to my

health or reputation, but I think it desirable to adopt such language so that the

danger of being hung can be contemplated in this framework.” (Drèze [1987], p.

78)

And to the specific example of Aumann Savage responds by saying: “In particular, I can

contemplate the possibility that the lady dies medically and yet is restored in good health to

her husband.” (Drèze [1987], p. 80). Even if such contemplation is possible, it is unnatural

and, hence, not likely to be invoked in the decision making process.

Consider next an amendment to Aumann’s example. Suppose that, in addition to choos-

ing between betting on the survival of his wife and on heads in a coin toss, the husband

may also choose the hospital in which the surgery is to take place and the surgeon who

performs it. If the likely outcome depends, as it often does, on the hospital and the surgeon,

the husband’s choice affects the chances of his wife’s survival. In other words, contrary to

Savage’s concept of a state space, the likely realization of the events depends on the action

taken by the husband.
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This discussion suggests that the possible outcomes of the operation are not states, or

events, in the sense of Savage’s theory. Yet they seem both natural and intuitive when

contemplating the proposed bets.

Example 2. To go from here to there, a passenger must choose between flying, driving,

or taking the bus.6 Suppose that the purpose of the trip is a week-long vacation, then the

consequences, namely, the actual duration of his vacation, depend on whether the passenger

arrives at his destination on time, arrives after delays of various durations, or does not arrive

at all.

The factors affecting the duration of the trip include the, unknown, traffic conditions

(which depends on choices of other people), the weather conditions, the mechanical state of

the different means of transportation, and so forth. These factors have different implications

for the duration of the trip depending on the choice of mean of transportation. The relevant

state space, in this case, is large and complex and to suppose that decision makers invoke

such a state space when choosing a mean of transportation strains credulity. Moreover, even

if the passenger invokes, in his deliberations, a state-space image of the world, being a state

of mind, it is impossible for others to infer it from his choice behavior. Clearly, different

decision makers facing the same choices, may invoke distinct state-spaces.

In short, the exacting nature of Savage’s analytical framework — its insistence that the

realization of the states be independent from the actions, that states be separated from con-

6This is a variation on a decision problem described in Luce and Krantz (1971).
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sequences, and that the state space be observable — makes it inadequate for the formulation

and analysis of some important decision situations. To suppose that decision makers always

invoke depictions of the world that qualify as states in the sense of Savage seems farfetched.

The upshot of this discussion is that a general positive theory of decision making under

uncertainty must not relay on the use of states of the world.

In the next section I explore an alternative theory that dispenses the state space. The

main idea is that decision makers directly assess the likelihood of different outcomes, or

effects, conditional on their choice of action. Consequently, this theory accommodates, in a

intuitive and natural way, the presence of moral hazard considerations in individual decisions

as well as the possibility that the valuation of the monetary payoffs of these decisions are

effect-dependent.

3 Subjective Expected Utility Theory

3.1 The analytical framework

Let Θ be a finite set of effects and let A be a set whose elements represent courses of action,

or actions for short. A bet, b, is a mapping fromΘ into R, the set of real numbers.7 Bets have

the interpretation of monetary payoffs contingent on the effects. Let B := RΘ denote the

7The use of the reals is intended to simplify the exposition. It could easily be replaced by Rn or, more

generally, by a connected separable topological space.
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set of all bets and assume that it is endowed with the R|Θ| topology. Denote by (b−θ, r) the

bet obtained from b ∈ B by replacing the θ−coordinate of b, that is, b (θ) , with r. Similarly,

for each T ⊂ Θ and b, b0 ∈ B, let bΦb0 be the bet in B defined by (bT b0) (θ) = b (θ) for all

θ ∈ T and (bT b0) (θ) = b0 (θ) for all θ ∈ Θ− T. Two bets, say b and b0, are said to agree on

T if b(θ) = b0 (θ) for all θ ∈ T.

Decision makers are supposed to be able to choose actions and place bets on the effects.

The idea is that a choice of action, a, results in the realization of an effect in Θ; which

particular effect obtains is uncertain, and the effect that obtains determines the payoff of the

chosen bet. For example, a decision maker may adopt an exercise and diet regimen to reduce

the risk of heart attack and at the same time take out health insurance and life insurance

policies. The health implications of the diet and exercise regimen correspond to the effects

while the financial terms of the insurance policies constitute a bet. Similarly, a store owner

can choose the location of his store, his weekly work schedule and, within limits, the equity

that he has in the business. The revenue represents the effects of his management decisions

(actions) and the financial decision represents his bet. Formally, the choice set, C, consists

of all the action-bet pairs (that is, C = A×B). A choice of an action a and a bet b results,

ultimately, in an effect-payoff pair, (θ, b (θ)). I refer to effect-payoff pairs as consequences and

denote by C the set of all consequences (that is, C = Θ×R).

Decision makers are characterized by binary relations, <, on C, that have the interpreta-

tion of preference relations. The strict preference relation, Â, and the indifference relation,

∼, are the asymmetric and symmetric parts of <, respectively. For each a ∈ A, the prefer-
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ence relation < on C induces a conditional preference relation on B defined as follows: For

all b, b0 ∈ B, b <a b
0 if and only if (a, b) < (a, b0) .

A decision maker may believe that if he were to select a particular course of action, certain

effects are impossible to obtain. It is tempting to suppose that this belief manifests itself in

indifference among all the bets that agree on the set of all other effects. Conceivably, however,

there may be effects that the decision maker believes to be possible and yet, if any of these

effects obtain, the decision maker would be indifferent among all the monetary payoffs. For

example, a decision maker with no dependents who is about to board a flight, may decline

offers to take out a flight insurance policy, regardless of how favorable are the terms of the

policy. This does not mean that the decision maker regards the effect “dying in a plane crash”

to be impossible. In what follows I assume that no such effects are present in the model.

Formally, an effect θ is said to be nonnull given the action a if (a, (b−θ, r)) Â (a, (b−θ, r0)) ,

for some b ∈ B and r, r0 ∈ R. Assume that every effect is nonnull for some action a. An

effect θ is said to be null given the action a if (a, (b−θ, r)) ∼ (a, (b−θ, r0)) for all r, r0 ∈ R.

Given a preference relation <, denote by Θ (a;<) the subset of effects that are nonnull given

a according to <. To simplify the notations, when there is no risk of confusion, I shall write

Θ (a) instead of Θ (a;<).

Two effects, θ and θ0 are said to be elementarily linked if there are actions a, a0 ∈ A such

that θ, θ0 ∈ Θ (a) ∩ Θ (a0) . Two effects are said to be linked if there exists a sequence of

effects θ = θ0, θ1, ..., θn = θ0 such that every θj is elementarily linked with θj+1. I assume

throughout that the set of actions is rich enough so that every pair of effects is linked.
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3.2 Constant valuation bets

Intuitively speaking, a constant valuation bet is a bet that, once accepted, leaves the decision

maker indifferent among all the actions. For example, a full insurance policy is a constant

valuation bet since, by definition, a decision maker who takes out a homeowner policy that

provides full insurance is indifferent to whether or not his house is damaged by storm,

consumed by fire, or remains intact.8 The idea is that, the decision maker believes that by

choosing alternative actions he may affect the likely realization of different effects. This,

in turn, determines the relative desirability of the alternative bets. In particular, with

sufficiently large number of variations of the likely realization of alternative effects there are

no two bets that are equally desirable under all such variations. Let I (a; b) = {b0 ∈ B |

(a, b0) ∼ (a, b)} then the idea of constant valuation bets is formalized as follows:

Definition 1: A bet b̄ is said to be a constant-valuation bet on Θ if
¡
a, b̄
¢
∼
¡
a0, b̄

¢
for all

a, a0 ∈ A, and ∩a∈AI
¡
a; b̄
¢
= {b̄}.

The last requirement implies that if b∗ is a constant valuation bet then no other b ∈

∩a∈AI
¡
a; b̄
¢
satisfies (a, b) ∼ (a0, b) for all a, a0 ∈ A. The set of all constant valuation bets is

denoted by Bcv. If b∗∗ and b∗ are constant valuation bets satisfying (a0, b∗∗) Â (a0, b∗) then

transitivity of < implies (a, b∗∗) Â (a, b∗) for all a ∈ A. Since transitivity will be assumed, I

8The concept of constant valuation bets is analogous to constant valuation acts in Karni (1993, 2003).

The idea of constant valuation acts is similar to Drèze’s (1987) notion of “omnipotent” acts. A similar

concept appears in Skiadas (1997).
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write b∗∗ Â b∗ instead of (a, b∗∗) Â (a, b∗) .

The following assumption is maintained throughout.

(A.0) Every pair of effects is linked, there exist constant-valuation bets b∗∗ and b∗ such that

b∗∗ Â b∗ and, for every (a, b) ∈ C, there is b̄ ∈ Bcv satisfying (a, b) ∼ b̄.

3.3 Axioms

The structure of the preference relations on C is depicted axiomatically. The first two axioms

are standard and require no commentary.

(A.1) (Weak order) < on C is a complete and transitive binary relation.

(A.2) (Continuity) For all (a, b) ∈ C the sets {(a, b0) ∈ C | (a, b0) < (a, b)} and {(a, b0) ∈

C | (a, b) < (a, b0)} are closed.

The third axiom requires that the “intensity of preferences” for monetary payoffs contin-

gent on any given effect be independent of the action that resulted in that effect. It invokes

Wakker’s (1987) idea of cardinal consistency and, in its present form, it is an adaptation of

Karni’s (2004) cardinal coherence.

(A.3) (Action-independent betting preferences) For all a, a0 ∈ A, b, b0, b00, b000 ∈ B,

θ ∈ Θ (a)∩Θ (a0) , and r, r0, r00, r000 ∈ R, if (a, (b−θ, r)) <
¡
a,
¡
b0−θ, r

0¢¢ , ¡a, ¡b0−θ, r00¢¢ <
(a, (b−θ, r

000)) , and
¡
a0,
¡
b00−θ, r

0¢¢ < ¡a0, ¡b000−θ, r¢¢ then ¡a0, ¡b00−θ, r00¢¢ < ¡a0, ¡b000−θ, r000¢¢ .
12



To grasp the meaning of action-independent betting preferences think of the preferences

(a, (b−θ, r)) <
¡
a,
¡
b0−θ, r

0¢¢ and ¡a, ¡b0−θ, r00¢¢ < (a, (b−θ, r000)) as indicating that, given action
a and effect θ, the intensity of the preferences of r00 over r000 is sufficiently larger than that

of r over r0 as to reverse the preference ordering of the effect-contingent payoffs b−θ and b0−θ.

The axiom requires that these intensities not be contradicted when the action is a0 instead

of a.

Figure 1 illustrates the axiom and the structure it imposes on the preference relations.

Suppose, for the sake of simplicity that there are only two effects so that (b−θr) = (y0, r) is

a point in a two dimensional plane. The lower plane in Figure 1 corresponds to action-bet

pairs in which the action is a while the upper plane corresponds to action-bet pairs in which

the action is a0. The axiom, depicted for expositional convenience in terms of the indifference

relations instead of weak preferences, requires that if (a; (y0, r)) ∼ (a; (y, r0)) , (a; (y0, r00)) ∼

(a; (y, r000)) , and (a0; (y000, r)) ∼ (a0; (y00, r0)) (these indifference relations are depicted by the

corresponding point on the solid indifference curves), then (a0; (y000, r00)) ∼ (a; (y00, r000)) (an

indifference depicted by points on the dashed indifference curve). Clearly, if a = a0 then this

condition collapse to the Redmeister condition (see Wakker [1989]). Figure 1 also clarifies

the idea of the intensity of preferences discussed above. The intensity of preferences of r0

over r is measured by the compensating variation y0 → y if the action is a and y000 → y00 when

the action is a0.Next the compensating variation y0 → y is used to measure the intensity of

preference of r000 over r00. In particular, in this illustration intensity of preferences of r0 over

r is the same as that of r000 over r00 as they both require the same compensating variation,
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namely, y0 → y. If, in addition, the compensating variation y000 → y00 is a measure of the

intensity of preferences of r0 over r when the action a0 is then the axiom requires that it also

be a measure of the intensity of preference of r000 over r00. In other words, the intensity of

preference of r0 over r relative to that of r000 over r00 do not change either when the action

changes or when the payoff of the bet on the other effect varies.

In addition, for every given act, axiom (A.3) embodies the independence of preferences

for the payoff conditional on any given effect from the payoffs of the bet associated with the

other effects. This independence property implies the well-known Sure Thing Principle and,

in the case of two effects, the hexagon condition (for more details see Lemmas 4 and 5 in

Section 5.1). To grasp the last claim, suppose that a = a0, y00 = y0, and r0 = r00 then Figure

1 collapses to Figure 2, which is the customary depiction of the hexagon condition.

3.4 The main representation theorem

The main result of this paper is the assertion that a preference relation on C has the structure

described by axioms (A.1) — (A.3) if and only if there is a continuous utility function, u, on

the set of consequences, a family of action-dependent probability measures, {π (·; a) | a ∈ A},

on the set of effects, and a family of continuous increasing functions {fa : R→ R | a ∈ A},

such that the assignment (a, b) → fa
¡P

θ∈Θ u (b (θ) ; θ)π (θ; a)
¢
represents the preference

relation. Furthermore, for each a ∈ A, the probability measure π (·; a) is unique, satisfying

π (θ; a) = 0 if and only if θ is null given a, and the utility functions {u (·; θ)}θ∈Θ and the
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functions {fa}a∈A are jointly unique in the following sense: If {u (·; θ)}θ∈Θ are transformed

by a cardinal unit-comparable affine transformation, then the functions fa unique up to a

corresponding affine translation.

Theorem 1 Suppose that there are at least two effects and that assumption (A.0) is satisfied,

then:

(a) The following conditions are equivalent:

(a.i) The preference relation, < on C, satisfies (A.1) — (A.3).

(a.ii) There exist continuous function u : C → R, a family of probability measures {π (·; a)}a∈A

on Θ, and a family of continuous increasing functions {fa : R→ R}a∈A such that, for

all (a, b) , (a0, b0) ∈ C,

(a, b) < (a0, b0)⇔ fa

ÃX
θ∈Θ

u (b (θ) ; θ)π (θ; a)

!
≥ fa0

ÃX
θ∈Θ

u (b0 (θ) ; θ)π (θ; a0)

!
.

(b) v and {ga}a∈A is another utility function and a family of increasing continuous func-

tions that represent the preference relation in the sense of (a.ii) if and only if, for

all θ ∈ Θ, v (·, θ) = λu (·, θ) + ς (θ) , λ > 0, and ga (λx+ ς) = fa (x) , for all

x ∈ {
P

θ∈Θ u
¡
b̄ (θ) ; θ

¢
π (θ; a) | b̄ ∈ Bcv}, where ς =

P
θ∈Θ ς (θ).

(c) For each a ∈ A, π (·; a) is unique and π (θ; a) = 0 if and only if θ is null given a.

The proof of Theorem 1 is given in Section 5.1. A sketch of the argument that (a.i) →

(a.ii), which is the difficult part of the proof, is in order. For every given a ∈ A, (A.1),
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(A.2) and (A.3) imply the existence of jointly cardinal continuous additive representation

of <a, (that is, for every given a, <a is represented by (a, b) 7→
P

θ∈Θwa (b (θ) , θ) , and the

wa (·; θ) are unique up to multiplication by a positive, common, number and the addition

of numbers that may depend on θ). Axiom (A.3) also implies that, for all a, a0 ∈ A, and

θ ∈ Θ, wa (·; θ) = β (a, a0; θ)wa0 (·; θ) + γ (a, a0; θ) where β (a, a0; θ) ≥ 0 and β (a, a0; θ) > 0

if θ ∈ Θ (a) ∩ Θ (a0). Next for each the probabilities {π (θ; a) | a ∈ A, θ ∈ Θ} are defined

by π (θ; a) = 0 if θ /∈ Θ (a) and by the solution to the system of equations π (θ; a) =

β (a, a0; θ)π (θ; a0) and
P

θ∈Θ π (θ; a) = 1, a, a0 ∈ A, θ ∈ Θ (a) ∩ Θ (a0) . The utility of the

consequences (θ; r) , r ∈ R, u (θ; r) , is defined by wa(θ; r)/π (θ; a) , which is shown to be

independent of a. Finally, fixing ā ∈ A and invoking the constant valuation bets, define fa

for all a ∈ A by
P

θ∈Θ u
¡
b̄ (θ) ; θ

¢
π (θ; ā) ≥ fa

¡P
θ∈Θ u

¡
b̄ (θ) ; θ

¢
π (θ; a)

¢
. This links the

representations across actions.

3.5 Effect-independent preferences on bets

If the decision maker bets on the effect of the next turn of a roulette wheel, it is reasonable to

suppose that he does not care about the effect except insofar as it determines his monetary

payoff. This example is typical of situations in which the decision maker’s betting preferences

are effect independent. The following axiom, which is similar to Wakker’s (1987) cardinal

consistency, captures this idea:

(A.4) (Effect-independent betting preferences) For all a ∈ A, b, b0, b00, b000 ∈ B, θ, θ0 ∈
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Θ (a) , and r, r0, r00r000 ∈ R, if
¡
a, (b0−θ, r)

¢
< (a, (b−θ, r0)), (a, (b−θ, r00)) <

¡
a, (b0−θ, r

000)
¢
,

and
¡
a, (b00−θ0 , r

0)
¢
<
¡
a, (b000−θ0 , r)

¢
then

¡
a, (b00−θ0 , r

00)
¢
<
¡
a, (b000−θ0 , r

000)
¢
.

The interpretation of (A.4) is analogous to that of action-independent betting preferences.

The preferences
¡
a, (b0−θ, r

0)
¢
< (a, (b−θ, r)) and (a, (b−θ, r00)) <

¡
a, (b0−θ, r

000)
¢
) indicate that

the “intensity” of the preference for r00 over r000 in given the effect θ is sufficiently greater

than that of r over r0 as to reverse the order of preference between the payoffs b0−θ and b−θ.

Outcome independence requires that these intensities not be contradicted by the preferences

between the same payoffs given any other effect θ.

Theorem 2 Suppose that there are at least two effects and that assumption (A.0) is satisfied,

then:

(a) The following conditions are equivalent:

(a.i) The preference relation, < on C, satisfies (A.1)—(A.4).

(a.ii) There exist continuous function u : R → R and, for all θ ∈ Θ, there are numbers

σ (θ) > 0, κ (θ) , a family of probability measures {π (·; a)}a∈A on Θ, and and a family

of increasing continuous functions {fa : R→ R}a∈A such that for all (a, b) , (a0, b0) ∈ C,

(a, b) < (a0, b0) if and only if

fa

ÃX
θ∈Θ

[σ (θ)u (b (θ)) + κ (θ)] π (θ; a)

!
≥ fa0

ÃX
θ∈Θ

[σ (θ)u (b0 (θ)) + κ (θ)]π (θ; a0)

!
.
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(b) v and {ga}a∈A is another utility function and a family of increasing continuous functions

that represent the preference relation in the sense of (a.ii) if and only if, for all θ ∈ Θ,

v (·) = λu (·)+ς, λ > 0, and ga (λx+ ς) = fa (x) , for all x ∈ {
P

θ∈Θ u
¡
b̄ (θ) ; θ

¢
π (θ; a) |

b̄ ∈ Bcv}.

(c) For each a ∈ A, π (·; a) is unique and π (θ; a) = 0 if and only if θ is null given a.

A constant-payoff bet is a bet satisfying b (θ) = b for all θ. If all constant-payoff bets are

constant-valuation bets then both the preference relation and the utility functions display

effect independence.9 The following is an immediate implication of Theorem 2.

Corollary 3 Suppose there are at least two effects, that assumption (A.0) is satisfied, and

constant-valuation bets are constant payoff bets. Then the following conditions are equivalent:

(i) The relation < on C satisfies (A.1) — (A.4).

(ii) There exist a continuous real-valued function u on Θ, unique up to positive linear

transformation, a unique family of probability measures {π (·; a) | a ∈ A} on Θ,

and a family of increasing continuous functions {fa : R→ R}a∈A such that, for all

(a, b) , (a0, b) ∈ C,

(a, b) < (a0, b0)⇔ fa

ÃX
θ∈Θ

u (b (θ))π (θ; a)

!
≥ fa0

ÃX
θ∈Θ

u (b0 (θ))π (θ; a0)

!
,

9Effect-independent preferences are analogous to state-independent preferences, effect-independent util-

ity function is analogous to state-independent utility function in the traditional formulations of subjective

expected utility theory (see Karni [1996]).
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where π (θ; a) = 0 if and only if θ is null given a. Furthermore, v and {ga}a∈A is

another utility function and a family of increasing continuous functions that represent

the preference relation in the sense of (a.ii) if and only if, for all θ ∈ Θ, v (·) = λu (·)+ς,

λ > 0, and ga (λx+ ς) = fa (x) , for all x ∈ {
P

θ∈Θ u
¡
b̄ (θ) ; θ

¢
π (θ; a) | b̄ ∈ Bcv}.

The proof of the corollary is as follows: If b∗ is a constant valuation bet then, by the

normalization, σ (θ)u (b∗ (θ)) + κ (θ) = σ (θ0)u (b∗ (θ0)) + κ (θ0) = 0 for all θ, θ0 ∈ Θ. But

if constant-valuation bets are constant-payoff bets then u (r)
P

θ∈Θ [σ (θ) + κ (θ)]π (θ, a) =

u (r)
P

θ∈Θ [σ (θ) + κ (θ)]π (θ, a0) , where r ∈ {b∗, b∗∗}. Hence
P

θ∈Θ [σ (θ) + κ (θ)]π (θ, a) =P
θ∈Θ [σ (θ) + κ (θ)]π (θ, a0) 6= 0. Consequently, u (b∗ (θ0)) = u (b∗ (θ)) = 0. Hence κ (θ) =

κ (θ0) = 0 and, by the definition of constant valuation bets, σ (θ) = σ (θ0) = σ for all

θ, θ0 ∈ Θ. The corollary then follows from Theorem 2.

4 Beliefs and Probabilities

Following the seminal work of Ramsey (1931), it is now commonplace to infer the degree of

belief a decision maker holds about the likely realization of an event by his willingness to bet

on that event. Presently the issue is the degree of belief of a decision maker regarding the

likely realization of effects. However, effects may have implications for the decision maker’s

well-being that are independent of the payoff of the bet, and his beliefs regarding the likely

realization of effects may depend on his choice of action. This means that the application of
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Ramsey’s method must be approached with care. First, the bets that figure in the definition

of beliefs must be chosen in a way that neutralizes the influence of the effects, that is, by

replacing the constant monetary payoffs in Ramsey’s definition with constant utility payoffs.

Second, the bets must be defined conditional on the action.

4.1 Constant utility bets

A bet b is said to be a constant utility bet if u (b (θ) , θ) = u (b (θ0) , θ0) for all θ, θ0 ∈ Θ.

It is tempting to suppose that constant valuation bets are constant utility bets. However,

because of possible variations in direct influence of the actions on the valuation of the bets

(that is, because it is possible that fa 6= fa0 for some a, a0 ∈ A) it is not true, in general,

that constant valuation bets are constant utility bets. The following example illustrates this

point.

Example: Let Θ = {θ, θ0}, A = {a, a0}, and suppose that π (θ, a) = π (θ0, a) = 1/2 and

π (θ, a0) = 2/3, π (θ0, a0) = 1/3. Let the range of payoffs to the bets under the two effects be

the closed unit interval (that is, {b (θ) | b ∈ B} = {b (θ0) | b ∈ B} = [0, 1]). Let V : C → R

be defined by:

V (j, b) = fj (π (θ, j) b (θ) + π (θ0, j) b (θ0)) , j ∈ {a, a0},

where fa is the identity function and fa0 (x) =
¡
1 + 3x−

√
1 + 3x

¢
/2.

Define a preference relation < on C by (j, b) < (i, b0) if and only if V (j, b) ≥ V (i, b0) ,

i, j ∈ {a, a0}. Let b∗∗ = (1, 1) , b∗ = (0, 0) . Then it is easy to verify that (A.0), (A.1), (A.2)
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and (A.3) are satisfied.

For every r ∈ [0, 1] , b̄r :=
¡
b̄r (θ) , b̄r (θ

0)
¢
= (r, r2) , is a constant valuation bet. Thus

Bcv = {b̄r | r ∈ [0, 1]}, while the set of constant utility bets is Bcu = {b ∈ B | b (θ) = b (θ0)}.

¥

A constant valuation bet is a constant utility bet if and only if the utility functions fa

are action independent. Formally, Bcv = Bcu if and only if fa = fa0 , for all a, a0 ∈ A.

Notice that because the utility functions that figure in the representation are deduced from

individual choice behavior, it is possible to verify, within the framework of revealed preference

methodology, whether constant valuation bets are constant utility bets.

4.2 Beliefs and their representation

Invoking the notion of constant utility bets and using Ramsey’s approach, it is natural to

define decision makers’ conditional beliefs as follows:

Definition 2: For every given a ∈ A, a binary relation Da on 2Θ is a decision maker’s

beliefs conditional on a if, for all constant utility bets b̃ and b̃0, such that b̃0 Â b̃, S Da T

if and only if
³
a, b̃0S b̃

´
<
³
a, b̃0T b̃

´
.

The interpretation of S Da T is that the decision maker believes that if action a were

chosen then it is more likely that the effect that obtains is in S than that it is in T . The def-

inition of beliefs is choice-theoretic (that is, all the conditions in the hypothesis of Definition
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2 are potentially refutable within the revealed-preference methodological framework). More-

over, it is easy to verify that the probability measures that figure in the representation in

Theorem 1 are the only probability measures representing the decision maker’s conditional

beliefs. In other words, {π (·; a)}a∈A is the sole family of probability measures satisfying

S Da T if and only if π (S; a) ≥ π (T ; a) , where π (H, a) =
P

θ∈H π (θ; a) , for all H ⊂ Θ and

a ∈ A.

This is, as far as I know, the only behavioral definition of subjective probabilities that

truly represent the decision makers’ beliefs. Moreover, it is possible now to define a binary

relation D on A× 2Θ representing a decision maker’s beliefs as (a, S) D (a0, T ) if and only if

π (S; a) ≥ π (T ; a0) . The interpretation of (a, S) D (a0, T ) is that the decision maker believes

that if action a would be chosen then it is more likely that the effect that obtains is in S

than that it is in T if the action a0 is chosen instead.

5 Concluding Remarks

The representation Theorems 1, 2, and Corollary 3 give necessary and sufficient conditions

for the decision-making process to be decomposed into two cognitive subprocesses. The first

is the assessment of the likely realization of different effects conditional on the decision-

maker’s actions. The second is the evaluation of the consequences, that is, effect-payoff

pairs, that may result from the implementation of those actions. The two processes are

integrated to produce a value that is action-dependent function of a subjective expected
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utility corresponding to each action-bet pairs. If the value depends on the action solely

through its effect on the probabilities then the result of this work is a new subjective expected

utility theory that, unlike traditional theories, does not invoke Savage’s notion of states of

the world to resolve uncertainty. This theory may better describe how decision makers

actually perceive and assess their options. It does not rule out that decision makers mentally

construct a state space to help organize their thoughts, but it does not require that they do. In

other words, when the state space is objectively observable and the likely realization of the

states is independent of the decision maker’s choice of actions, so that traditional subjective

utility theory is relevant, there is no contradiction between the theory developed here and

the traditional approach. The traditional theory may easily be embedded in the present

framework by defining the actions-bet pairs as random variables on the state space and, for

every given action, assigning to the effects the probabilities of the events in the state space in

which these effects are realized under the given action. Note, however, that even if decision

makers do construct a mental state space to help organize their thoughts, the states are

not always independently observable, and using them, in such cases, is not a good scientific

procedure.

The quest to extend subjective expected utility theory to accommodate moral hazard

and state-dependent preferences was pioneered by Drèze (1961,1987). Invoking the analytical

framework of Anscombe and Aumann (1963), Drèze relaxes their “reversal of order” axiom to

allow decision makers to strictly prefer knowing the outcome of a lottery before, rather than

after, the state of nature becomes known. This is taken to imply that knowing the payoff
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ahead of time would allow the decision maker to influence the probabilities of the states. How

this may be done is not model explicitly, and the representation entails the maximization

of subjective expected utility over a convex set of subjective probability measures. The

theory developed in this paper differ from that of Drèze in several important respects. First,

the analytical framework is different. Unlike Drèze I avoid the state space formulation and

do not use probabilities as a primitive concept. Second, in this paper actions are modeled

explicitly as part of the choice set. Drèze’s presumed motive for not dealing with actions

explicitly is that, in the context of principal-agent relationships action may be unobservable

by the principal. The position taken here is that, whether or not actions are observable by a

second party, decision makers are aware of the actions they may take and have well-defined

preference relations on action-bet pairs.

A different approach to modeling subjective distributions without relying on a state space

is pursued in Gilboa and Schmeidler (2004). They model preferences over acts conditional on

what, in this paper, I referred to as bets. Instead of deriving the utility, Gilboa and Schmei-

dler assume that an outcome-independent (that is effect-independent in the terminology of

this paper) linear utility on bets is given and derive subjective probabilities on the outcome,

consistent with expected value maximizing behavior.10

Recognizing the ability of the decision makers to influence, by their actions, the likeli-

10Note that Gilboa and Schmeidler assume, without calling them by these names, that constant-payoff

bets are constant-valuation bets. Thus they implicitly assume not only that the preferences but also the

utility functions are effect independent.
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hoods of alternative effects creates a natural link between the present work and the literature

dealing with principal-agent relationship in the presence of moral hazard. A principal-agent

relationship is governed by a contract specifying the agent’s payoff as a function of the

observed effect. Let W := {w : Θ → R} denote the set of contracts, where Θ has the

interpretation of output. Clearly, contracts are bets on the output, and the agent’s choice

of action affect the likely realization of alternative levels of output. The modeling of the

behaviors of the principal and the agent in the context of agency theory admits alterna-

tive formulations, including the state-space formulation and the parameterized distribution

formulation (see, for example, Hart and Holmstrom [1979], Chambers and Quiggin [2000]).

The latter formulation, pioneered and popularized by Mirrlees (1974, 1976), is analytically

convenient and is often used in applications. If the constant valuation bets are constant

utility bets then the decision theory developed here depicts, axiomatically, the principal’s

conduct in parameterized distribution formulation of agency theory.

In many applications of agency theory the choice of action is supposed to affect the agent’s

well-being directly and independently of its influence on the desirability of alternative bets.

A development of a full fledge axiomatic model of the agent’s behavior, that takes into

account the direct effect of the actions on the agent’s well-being, is the subject matter of a

companion paper Karni (2004a).

There are decision situations in which the decision maker is aware that he may not be

aware of all the relevant effects. The degree of his belief in these unknown effects reflects

itself in his choice of actions and bets. In paricular, suppose that one of the effects, say θ̂, is
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interpreted as “none of the above” and the bets specify the payoff to each one of the effects in

Θ− {θ̂} and also the payof if non of these effects obtains. Then, applying the results of this

paper it is possible to obtain a utility u
³
·; θ̂
´
representing the valaution of the payoff in case

non of the effects of which the decision maker is aware obtains and also the corresponding

action-dependent probabilities {π
³
θ̂; a
´
}a∈A.

6 Proofs

6.1 Proof of Theorem 1.

As a preliminary step I prove two results that are of interest in their own right.

Coordinate independence requires that, for every given action, the preference between

any two bets be independent of the payoffs contingent on effects on which the two bets agree.

For every given action, this condition is analogous to Savage’s (1954) Sure Thing Principle.

Like it, it implies the separability of the valuation of the monetary payoffs across effects.

(Coordinate independence) For all a ∈ A, b, b0 ∈ B, θ ∈ Θ, and r, r0 ∈ R, (a, (b−θ, r)) <¡
a,
¡
b0−θ, r

¢¢
if and only if (a, (b−θ, r0)) <

¡
a,
¡
b0−θ, r

0¢¢ .
Lemma 4 Let there be at least three nonnull effects. If < on C satisfies (A.3) then it

satisfies coordinate independence.
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Proof. Suppose that
³
a,
³
b̃−θ, r̃

´´
<
³
a,
³
b̂−θ, r̃

´´
and

³
a,
³
b̂−θ, r̂

´´
Â
³
a,
³
b̃−θ, r̂

´´
for some a ∈ A, b̃, b̂ ∈ B, θ ∈ Θ (a) , and r̃, r̂ ∈ R. In (A.3), let r = r0 = r̃, r000 = r00 = r̂,

a = a0, b = b00 = b̃, and b0 = b000 = b̂. Then, (A.3) implies that
³
a,
³
b̃−θ, r̂

´´
<
³
a,
³
b̂−θ, r̂

´´
which is a contradiction. Hence

³
a,
³
b̃−θ, r̃

´´
<
³
a,
³
b̂−θ, r̃

´´
if and only if

³
a,
³
b̃−θ, r̂

´´
<³

a,
³
b̂−θ, r̂

´´
.

The well-known Hexagon condition implies additive separable representation for actions

that the decision maker believes have exactly two nonnull effects:

(Hexagon condition) For all a ∈ A, b ∈ B, and r, r0, r00 ∈ R, if Θ (a) = {θ, θ0}

then (a, (b−θ, r)−θ0 , r0) ∼ (a, (b−θ, r0)−θ0 , r) and (a, (b−θ, r)−θ0 , r00) ∼ (a, (b−θ, r0)−θ0 , r0) ∼

(a, (b−θ, r
00)−θ0 , r) imply (a, (b−θ, r0)−θ0 , r00) ∼ (a, (b−θ, r00)−θ0 , r0) .

Lemma 5 Let there be exactly two nonnull effects. If < on C satisfies (A.3) then it satisfies

the Hexagon condition.

Proof. Suppose that < on C satisfies (A.1) and (A.3). Suppose that
¡
a, (b−θ0 , r

0)−θ , r
¢
∼¡

a, (b−θ0 , r)−θ , r
0¢ and ¡a, (b−θ0 , r)−θ , r00¢ ∼ ¡a, (b−θ0 , r0)−θ , r0¢ ∼ ¡a, (b−θ0 , r00)−θ , r¢ . Apply

(A.3) with a = a0, r000 = r0, b000−θ = b−θ = (b−θ0 , r
0)−θ , b

0
−θ = (b−θ0 , r)−θ , and b00−θ = (b−θ0 , r

00)−θ.

Then, apply (A.3) twice to obtain
¡
a, (b−θ0 , r

0)−θ , r
00¢ ∼ ¡a, (b−θ0 , r00)−θ , r0¢ .

The following additional terminology will be used in the proof below: An array of real-

valued functions (vs)s∈S is said to be a jointly cardinal additive representation of a bi-

nary relation º on a product set D = Πs∈SDs if, for all d, d0 ∈ D, d º d0 if and only if
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P
s∈S vs (ds) ≥

P
s∈S vs (d

0
s) , and the class of all functions that constitute an additive repre-

sentation of º consists of those arrays of functions, (v̂s)s∈S , for which v̂s = λvs + ζs, λ > 0

for all s ∈ S. The representation is continuous if the functions vs, s ∈ S are continuous.

I turn next to the proof of Theorem 1.

(a.i) ⇒ (a.ii). Since < satisfies (A.1)-(A.3), Lemma 4, Lemma 5 above and Theorem

III.4.1 of Wakker [1989] imply that, for every a ∈ A such that Θ (a) contains at least two

nonnull effects, there exist array of functions {wa (·; θ) : R → R}θ∈Θ that constitute jointly

cardinal continuous additive representation of <a on B.11

Observe that, for all a, a0 ∈ A and θ ∈ Θ (a)∩Θ (a0) , wa (·; θ) and wa0 (·; θ) are ordinally

equivalent.

Claim 1: For all a, a0 ∈ A, θ ∈ Θ (a) ∩ Θ (a0) , and r0, r ∈ R, wa (r
0; θ) ≥ wa (r; θ) if and

only if wa0 (r
0; θ) ≥ wa0 (r; θ).

Proof. Let (a0, (b−θ, r0)) < (a0, (b−θ, r)) . But (a0, (b−θ, r0)) < (a0, (b−θ, r0)) , (a0, (b−θ, r0)) <

(a0, (b−θ, r)) , and (a, (b−θ, r0)) < (a, (b−θ, r
0)) . Thus, by (A.3), (a, (b−θ, r0)) < (a, (b−θ, r)) .

The conclusion is implied by the representation of <.

By assumption (A.0) there are b∗∗, b∗ ∈ Bcv such that b∗∗ Â b∗. Invoking the uniqueness

of the jointly cardinal representation normalize {wa (·; θ)}θ∈Θ so that for all a ∈ A and θ ∈ Θ

11If a = ax (<) , (that is X (a) = {x}) then the fact that <a is a continuous weak order implies that there

exist continuous real-valued function wax (·;x) representing <ax on R (Debreu [1954] Theorem I).
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set wa (b
∗ (θ) ; θ) = 0.

Let Â be the subset of that consists of all actions that have at least two nonnull effects

(that is, Â = {a ∈ A | | Θ (a) |≥ 2}. Next I show that, for all a, ā ∈ Â and θ ∈ Θ (a)∩Θ (ā) ,

wa (·; θ) is either constant or is positive linear transformation of wā (·; θ) .

Lemma 6 The following conditions are equivalent:

(i) The relation < on C satisfies (A.1) — (A.3).

(ii) For every a, ā ∈ Â and θ ∈ Θ (a) ∩ Θ (ā) there exist β(a,ā,θ) > 0 such that wa (·; θ) =

β(a,ā,θ)wā (·; θ) , where {wj (·; θ) : R → R}θ∈Θ, j = a, ā constitute a jointly cardinal

continuous additive representation of <j on B.

Proof. (i) ⇒ (ii) . Let a, ā ∈ A be such that the number of nonnull effects in each set

Θ (a) and Θ (ā) is, at least, two. Suppose that < satisfies (A.1) — (A.3). Theorem III.4.1.

of Wakker (1989) implies that, for every given a ∈ A, there exist continuous functions

{wa (·; θ) : R → R | θ ∈ Θ} that constitute a jointly cardinal additive representation of <a

on B.

If Θ (a) ∩Θ (ā) 6= ∅, then, by the representation, for every θ0 ∈ Θ (a) ∩Θ (ā) there exist

b, b0, b00, b000 ∈ B such that

X
θ∈Θ−{θ0}

[wā (b (θ) ; θ)− wā (b
0 (θ) ; θ)] = ζ > 0, (1)
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and X
θ∈Θ−{θ0}

[wa (b
00 (θ) ; θ)− wa (b

000 (θ) ; θ)] = ε > 0. (2)

By continuity of the additive valued functions wa (·; θ) and the connectedness of R, for every

ζ̂ ∈ [−ζ, ζ], ε̂ ∈ [−ε, ε], and θ0 ∈ Θ (a) ∩Θ (ā) there exist b̄, b̄0, b̄00, b̄000 ∈ B such that

X
θ∈Θ−{θ0}

£
wā

¡
b̄ (θ) ; θ

¢
− wā

¡
b̄0 (θ) ; θ

¢¤
= ζ̂ (3)

and X
θ∈Θ−{θ0}

£
wa

¡
b̄00 (θ) ; θ

¢
− wa

¡
b̄000 (θ) ; θ

¢¤
= ε̂. (4)

Define φ(a,ā,θ) by wa (·; θ) = φ(a,ā,θ) ◦wā (·; θ) , θ ∈ Θ (a)∩Θ (ā) , then, by Claim 1, φ(a,ā,θ)

is a continuous increasing function . To show that φ(a,ā,θ) is linear, fix θ0 ∈ Θ (a) ∩ Θ (ā)

and let Iθ0 = wā (R; θ0) . Then, by the continuity of wā (·; θ0) , Iθ0 is an interval in R. Take

α, β, γ, δ ∈ Iθ0 such that −ζ ≤ α − β = γ − δ ≤ ζ and −ε ≤ φ(a,ā,θ0) (α) − φ(a,ā,θ0) (β) ≤ ε.

Let r, r0, r00, r000 ∈ R satisfy wā (r; θ
0) = α, wā (r

0; θ0) = β, wā (r
00; θ0) = γ and wā (r

000; θ0) = δ.

Take b, b0∈B such that

X
θ∈Θ−{θ0}

[wā (b (θ) ; θ)− wā (b
0 (θ) ; θ)] = α− β. (5)

Then, by the representation, (ā, (b−θ0 ; r)) ∼
¡
ā,
¡
b0−θ0 ; r

0¢¢ and (ā, (b−θ0 ; r00)) ∼ ¡ā, ¡b0−θ0 ; r000¢¢ .
Take b00, b000∈B such that

X
θ∈Θ−{θ0}

[wa (b
00 (θ) ; θ)− wa (b

000 (θ) ; θ)] = φ(a,ā,θ0) (α)− φ(a,ā,θ0) (β) . (6)
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Since wa (·; θ0) = φ(a,ā,θ0) ◦wā (·; θ0) this implies
¡
a,
¡
b00−θ0 , r

¢¢
∼
¡
a,
¡
b000−θ0 , r

0¢¢ . Applying (A.3)
twice yields

¡
a,
¡
b00−θ0 , r

00¢¢ ∼ ¡a, ¡b000−θ0 , r000¢¢ . Thus
φ(a,ā,θ0) (γ)− φ(a,ā,θ0) (δ) =

X
θ∈Θ−{θ0}

[wa (b
00 (θ) ; θ)− wa (b

000 (θ) ; θ)] = φ(a,ā,θ0) (α)− φ(a,θ0) (β) .

(7)

By Wakker (1987) Lemma 4.4 this implies that φ(a,ā,θ0) is affine. But, by Claim 1, φ(a,ā,θ0) is

increasing. Hence there exist β(a,ā,θ) > 0 and α(a,ā,θ) such that, for all r ∈ R and nonnull θ ∈

Θ (a) , wa (r; θ) = β(a,ā,θ)wā (r; θ) + α(a,ā,θ). By (A.3) and the normalization, wā (b
∗ (θ) ; θ) =

0 = wa (b
∗ (θ) ; θ) , for all θ ∈ Θ. Hence

X
t∈Θ

£
β(a,ā,θ)wā (b

∗ (θ) ; θ) + α(a,ā,θ)
¤
=
X
θ∈Θ

α(a,ā,θ) = 0,

and wa (r; θ) = β(a,ā,θ)wā (r; θ) , where β(a,ā,θ) ≥ 0 for all θ ∈ Θ. Thus (i)→ (ii) .

(ii) ⇒ (i) . That (ii) implies Axioms (A.1) and (A.2) is immediate. To prove that (ii)

implies (A.3) assume that for all a, ā ∈ A and θ0 ∈ Θ (a) there exist positive linear or constant

transformations φ(a,ā,θ0) such that wa (·; θ0) = φ(a,ā,θ0) ◦ wā (·; θ0). Let θ0 ∈ Θ (a) ∩ Θ (ā) .

Suppose that (ā, (b−θ0 , r)) <
¡
ā, (b0−θ0 , r

0)
¢
,
¡
ā, (b0−θ0 , r

00)
¢
< (ā, (b−θ0 , r000)) and

¡
a,
¡
b00−θ0 , r

0¢¢ <¡
a,
¡
b000−θ0 , r

¢¢
. By the representation, (ā, (b−θ0 , r)) <

¡
ā, (b0−θ0 , r

0)
¢
if and only if

wā (r; θ
0) +

X
θ∈Θ−{θ0}

wā (b (θ) ; θ) ≥ wā (r
0; θ0) +

X
θ∈Θ−{θ0}

wā (b
0 (θ) ; θ) (8)

and
¡
ā, (b0−θ0 , r

00)
¢
< (ā, (b−θ0 , r000)) if and only if

wā (r
000; θ0) +

X
θ∈Θ−{θ0}

wā (b (θ) ; θ) ≤ wā (r
00; θ0) +

X
θ∈Θ−{θ0}

wā (b
0 (θ) ; θ) . (9)

31



Hence

wā (r
0; θ0)−wā (r; θ

0) ≤
X

θ∈Θ−{θ0}

[wā (b (θ) ; θ)− wā (b
0 (θ) ; θ)] ≤ wā (r

00; θ0)−wā (r
000; θ0) . (10)

By positive linearity or constancy of φ(a,ā,θ0) these inequalities imply

wa (r
0; θ0)− wa (r; θ

0) ≤ wa (r
00; θ0)− wa (r

000; θ0) . (11)

Next observe that
¡
a,
¡
b00−θ0 , r

0¢¢ < ¡a, ¡b000−θ0 , r¢¢ if and only if
X

θ∈Θ−{θ0}

wa (b
00 (θ) ; θ) + wa (r

0; θ0) ≥
X

θ∈Θ−{θ0}

wa (b
000 (θ) ; θ) + wa (r; θ

0) . (12)

Thus

wa (r
0; θ0)− wa (r; θ

0) ≥
X

θ∈Θ−{θ0}

[wa (b
000 (θ) ; θ)− wa (b

00 (θ) ; θ)] . (13)

But inequality (11) implies

X
θ∈Θ−{θ0}

wa (b
00 (θ) ; θ) + wa (r

00; θ0) ≥
X

θ∈Θ−{θ0}

wa (b
000 (θ) ; θ) + wa (r

000; θ0) . (14)

Hence
¡
a,
¡
b00−θ0 , r

00¢¢ < ¡a, ¡b000−θ0 , r000¢¢ . Thus (ii)→ (i) .

Probabilities: Set π (θ; a) = 0 for all θ /∈ Θ (a) and π (θ; a) = 1 if Θ (a) = {θ}. For

every θ ∈ Θ and a ∈ Â, let A (θ) = {a ∈ Â | θ ∈ Θ (a)}. For every θ ∈ Θ, fix a ∈ A (θ) and

let {π (·; a)}a∈A on Θ be a solution of the equations

π (θ; a)− β(a,a0,θ)π (θ; a
0) = 0, for all a0 ∈ A (θ)− {a}, (15)

and X
θ∈Θ

π (θ; a) = 1 for all a ∈ A. (16)
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Next I show that {π (·; a)}a∈A on Θ are well-defined.

Claim 2: There exists a unique solution to the system of equations (15) and (16).

Proof. Let A = {a1, ..., an} and Θ (a) = {θ1(a), ..., θm(a)}. Write equations (15) and (16)

in matrix notation as follows: Mπt= β, where

π =
¡
π
¡
θ1(a1), a1

¢
, ..., π

¡
θm(a1), a1

¢
, ..., π

¡
θ1(an), an

¢
, ..., π

¡
θm(an), an

¢¢
t denotes the transpose of π, and β is a

Pn
i=1m (an) column vector whose last n coordinates

are 1 and all the other coordinates are 0 andM is the (
Pn

i=1m (ai))× (
Pn

i=1m (ai)) matrix

of coefficients of corresponding to the system of equations (15) and (16). The Matrix M is

of the following form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −β (a1, ak; θ) 0 0 0 0

0 0 1 0 0 0 0 0 −β (al, an; θ)

0 0 0 1 0 0 −β (ai, aj; θ) 0 0

. . . . . . . . .

0 1 0 −β (as, ah; θ) 0 0 0 0 0

1 ... 1 0 0 0 0 0 0

0 0 0 1 ... 1 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 0 0 1 ... 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
To show that M is non-singular suppose, by way of negation, that M is singular. Take
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b̄ ∈ Bcv such that b̄ and define ξa :=
P

θ∈Θwa

¡
b̄ (θ) ; θ

¢
, for all a ∈ A. Let

wt =
¡
wai

¡
b̄
¡
θ1(ai)

¢
, θ1(ai)

¢
, ..., wai

¡
b̄
¡
θm(ai)

¢
, θm(ai)

¢¢n
i=1

.

Then, by Lemma 6 and the normalization, Mwt=γ, where γ a
Pn

i=1m (an) column vector

whose last n coordinates are ξai and all the other coordinates are 0. SinceM is singular and

wt exists, there is b̂ 6= b̄ such that

ŵt=
³
wai

³
b̂
¡
θ1(ai)

¢
, θ1(ai)

´
, ..., wai

³
b̂
¡
θm(ai)

¢
, θm(ai)

´´n
i=1

satisfiesMŵt= γ. Thus b̂ ∈ Bcv and, for every a ∈ Â,

X
θ∈Θ

wa

¡
b̄ (θ) ; θ

¢
= ξa =

X
θ∈Θ

wa

³
b̂ (θ) , θ

´
,

implying
³
a, b̂
´
∼
¡
a, b̄
¢
. But this contradicts the uniqueness of constant valuation bets in

Definition 1. Hence M is non-singular and the system of equations (15) and (16) has a

unique solution.

Utilities: For any given r ∈ R, θ ∈ Θ, and a ∈ Â define u (r; θ, a) = wa (r; θ) /π (θ; a) if

π (θ; a) > 0 and u (r; θ, a) = ū otherwise. Note that, for all a ∈ Â and θ ∈ Θ (a0) ∩Θ (a),

u (r; θ, a0) =
wa0 (r; θ)

π (θ; a0)
=

wa (r; θ)

β(a0,a,θ)π (θ; a
0)
=

wa (r; θ)

π (θ; a)
= u (r; θ, a) , (17)

where the third inequality is implied by (15). Hence u (r; θ, a) = u (r; θ, a0) := u (r; θ)

for all a, a0 ∈ Â and θ ∈ Θ (a) ∩ Θ (a0) . Since any two effects are linked it follows that

u (r; θ, a) = u (r; θ) for all a ∈ Â and θ ∈ Θ (a) . For all a and θ such that π (θ, a) = 1 (that

is, a ∈ A− Â) set let u (r; θ) to be an increasing continuous function of r.
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By definition, wa (r; θ) = π (θ; a)u (r; θ) for all a ∈ A, θ ∈ Θ, and r ∈ R. Observe that,

for each a ∈ A, <a is represented by the subjective expected utility functional

(a, b) 7→
X
θ∈Θ

u (b (θ) ; θ)π (θ; a) . (18)

Representation: Fix ā ∈ A and, for each a ∈ A define a function fa : R→ R by

X
θ∈Θ

u
¡
b̄ (θ) ; θ

¢
π (θ; ā) = fa

ÃX
θ∈Θ

u
¡
b̄ (θ) ; θ

¢
π (θ; a)

!
, ∀b̄ ∈ Bcv. (19)

Then fa is well-defined and strictly increasing continuous function.

For all (a, b) and (a0, b0) in C

(a, b) < (a0, b0)⇔ fa

ÃX
θ∈Θ

u (b (θ) , θ)π (θ; a)

!
≥ fa0

ÃX
θ∈Θ

u (b0 (θ) , θ)π (θ; a0)

!
. (20)

(To see this observe that there is a constant valuation bet b̂ such that (a, b) <
³
a, b̂
´
∼³

a0, b̂
´
< (a0, b0) . Hence,

(a, b) <
³
a, b̂
´
⇔
X
θ∈Θ

u (b (θ) , θ) π (θ; a) ≥
X
θ∈Θ

u
³
b̂ (θ) , θ

´
π (θ; a)

and ³
a0, b̂

´
< (a0, b0)⇔

X
θ∈Θ

u
³
b̂ (θ) , θ

´
π (θ; a0) ≥

X
θ∈Θ

u (b (θ) , θ)π (θ; a0) .

But

³
a, b̂
´
∼
³
a0, b̂

´
⇔ fa

ÃX
θ∈Θ

u
³
b̂ (θ) , θ

´
π (θ; a)

!
= fa0

ÃX
θ∈Θ

u
³
b̂ (θ) , θ

´
π (θ; a0)

!
.

The conclusion follows by transitivity of < .) This completes the proof that (a.i)⇒ (a.ii) .
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(a.ii)⇒ (a.i) . That (a.ii) implies (A.1) — (A.2) is well known. That (a.ii) implies (A.3)

is implied by Lemma 6.

(b) Suppose that, for all θ ∈ Θ, v (·, θ) = λu (·, θ)+ ς (θ) , λ > 0, and ga (λx+ ς) = fa (x),

where ς =
P

θ∈Θ ς (θ). Then, for all a ∈ A,

ga

ÃX
θ∈Θ

v (b (θ) , θ)π (θ; a)

!
= fa

ÃX
θ∈Θ

u (b (θ) , θ)π (θ; a)

!

Hence, (20) implies that

(a, b) < (a0, b0)⇔ ga

ÃX
θ∈Θ

v (b (θ) , θ)π (θ; a)

!
≥ ga0

ÃX
θ∈Θ

v (b0 (θ) , θ)π (θ; a0)

!
.

Let v and {ga}a∈A be a representation of < in the sense of (a.ii). Then, by the uniqueness

of the jointly cardinal additive representation of <a, for all a ∈ A and θ ∈ Θ, v (·; θ)π (θ; a) =

λ (a)u (·, θ)π (θ; a) + ζ (θ; a), λ (a) > 0. But, by the normalization, v (b∗ (θ) ; θ)π (θ; a) =

ζ (θ; a) . Hence v (b∗ (θ) ; θ) = ζ (θ; a) /π (θ; a) = ς (θ). Let ς =
P

θ∈Θ ς (θ) .

Next observe that, v (b (θ) , θ) = λ (a)u (b (θ) , θ) + ς (θ) . But the left hand side is inde-

pendent of a. Thus λ (a) = λ for all a ∈ A. Hence

ga

ÃX
θ∈Θ

v (b (θ) , θ)π (θ; a)

!
= ga

Ã
λ
X
θ∈Θ

u (b (θ) , θ)π (θ; a) + ς

!
∀ (a, b) ∈ C.

But for all a, a0 ∈ A and b̄ ∈ Bcv,

fa

ÃX
θ∈Θ

u
¡
b̄ (θ) ; θ

¢
π (θ; a)

!
= fa0

ÃX
θ∈Θ

u
¡
b̄ (θ) ; θ

¢
π (θ; a0)

!

and

ga

ÃX
θ∈Θ

λu
¡
b̄ (θ) ; θ

¢
π (θ; a) + ς

!
= ga0

ÃX
θ∈Θ

λu
¡
b̄ (θ) ; θ

¢
π (θ; a0) + ς

!
.
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Thus ga (λx+ ς) = fa (x) , for all x ∈ {
P

θ∈Θ u
¡
b̄ (θ) ; θ

¢
π (θ; a) | b̄ ∈ Bcv} and a ∈ A.

(c) The uniqueness of {π (·; a)}a∈A and the fact that π (θ; a) = 0 if and only if θ is null

given a follows from the definition of the probabilities and Claim 2. ¤

6.2 Proof of Theorem 2.

The proof of Theorem 2 follows from that of Theorem 1 and the following Lemma.

Lemma 7 If | Θ (a) |≥ 2 then the following conditions are equivalent:

(i) The relation < on C satisfies (A.1), (A.2), and (A.4).

(ii) There exist a real-valued function, f, on R and positive affine functions ϕ(θ,a) :

f (R)→ R, for every θ ∈ Θ, such that, for all a ∈ A and b, b0 ∈ B,

(a, b) < (a, b0)⇔
X
θ∈Θ

ϕ(θ,a) ◦ f (b (θ)) ≥
X
θ∈Θ

ϕ(θ,a) ◦ f (b0 (θ)) .

Lemma 7 is implied by Wakker (1989) Theorem IV.2.7 and the assumption that every

effect is nonnull for some a0 ∈ A.

(a.i)→ (a.ii) Suppose that (a.i) holds. Lemma 7 and (A.3) imply the representation in

Theorem 1 where wa (·, θ) = u (·, θ)π (θ; a) = ϕ(θ,a) ◦ f (·) for every a ∈ A and θ ∈ Θ. Define

u (·) = f (·) . Then, by Lemma 7 and Theorem 1, for every θ ∈ Θ, u (·, θ)π (θ; a) = ϕ(θ,a)u (·) .
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Hence if π (θ; a) > 0 then ϕ(θ,a)/π (θ; a) > 0 is independent of a. Let (σ (θ) , κ (θ)) be, respec-

tively, the multiplicative and additive coefficients characterizing ϕ(θ,a)/π (θ; a) if π (θ; a) > 0.

But π (θ; a) > 0 for some a ∈ A.Thus, σ (θ) > 0. Hence u (·, θ)π (θ; a) = [σ (θ)u (·) + κ (θ)]π (θ; a) .

Substitute this in (a.ii) in Theorem 1 to obtain (a.ii).

The proof that (a.ii) implies (a.i) as well as that of parts (b) and (c) are implied by the

corresponding arguments in Theorem 1. ¤
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