
EMPIRICAL LIKELIHOOD METHODS IN ECONOMETRICS:
THEORY AND PRACTICE

YUICHI KITAMURA∗

Abstract. Recent developments in empirical likelihood (EL) are reviewed. First, to put the method in

perspective, two interpretations of empirical likelihood are presented, one as a nonparametric maximum

likelihood estimation method (NPMLE) and the other as a generalized minimum contrast estimator

(GMC). The latter interpretation provides a clear connection between EL, GMM, GEL and other

related estimators. Second, EL is shown to have various advantages over other methods. The theory

of large deviations demonstrates that EL emerges naturally in achieving asymptotic optimality both

for estimation and testing. Interestingly, higher order asymptotic analysis also suggests that EL is

generally a preferred method. Third, extensions of EL are discussed in various settings, including

estimation of conditional moment restriction models, nonparametric specification testing and time

series models. Finally, practical issues in applying EL to real data, such as computational algorithms

for EL, are discussed. Numerical examples to illustrate the efficacy of the method are presented.

1. Introduction

Likelihood-based methods are of fundamental importance in econometrics. When the model is

correctly specified, the maximum likelihood (ML) procedure automatically yields an estimator that is

asymptotically efficient in several senses. For instance, the maximum likelihood estimator (MLE) is

a best asymptotically normal (BAN) estimator (see, for example, Chapter 4 of Serfling (1980)) under

regularity conditions. It is known that a bias corrected MLE is higher order efficient (Ghosh (1994)).

Other concepts of asymptotic efficiency also point to the superiority of MLE. For example, consider

the following asymptotic efficiency criterion in terms of “large deviations” (see Chapter 10 of Serfling

(1980) for discussions on the large deviation theory). Suppose a random sample (z1, ..., zn) is generated
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according to a parametric probability measure Pθ. It is known that, in general, the probability of a

consistent estimator θn = θn(z1, ..., zn) missing its true value θ by a margin exceeding a fixed value c

decays exponentially as n goes to infinity. The (negative of the) decay rate

(1.1) lim inf
n→∞

1
n

logPθ{‖θn − θ‖ > c}, c > 0

has been used to measure the efficiency of θn. Obviously, an estimator that makes the “rate” (1.1)

small is desirable. Kester and Kallenberg (1986) show that MLE achieves the lower bound of the

above rate if the parametric model belongs to the convex exponential family. The last requirement is

rather restrictive, but it is removable in the sense that MLE is generally optimal if the limit of the

rate (1.1) as c → 0 is used as an efficiency criterion; see Bahadur (1960) and Bahadur, Zabell, and

Gupta (1980).

Inference methods based on likelihood also possess a number of desirable properties. A lead-

ing example is the celebrated Neyman-Pearson Fundamental Lemma. Moreover, the large deviation

principle (LDP) uncovers further optimality properties of the likelihood ratio test in broader contexts.

Hoeffding (1963) considers a multinomial model and shows that the likelihood ratio test is optimal

in terms of large deviation probabilities of type II errors. This optimality of the likelihood ratio test

has been extended to more general hypothesis testing problems for parametric distributions (Zeitouni

and Gutman (1991)).

As widely recognized, the validity of the likelihood approach generally depends on the assump-

tion on the parametric form for the data distribution, and this fact has spurred the development of

nonparametric and semiparametric methods. Perhaps one of the earliest ideas of treating the data

distribution nonparametrically in statistical estimation and testing is to use the empirical distribution

of the data by comparing it with the (family of) distribution(s) implied by a statistical model. This

requires some measure of divergence between distributions. Standard testing methods such as the

Kolmogorov-Smirnov test fall into this category, but the estimation theory based on the idea has

been developed as well, as exemplified by the classic treatise by Wolfowitz (1957) on the minimum

distance estimation. See Manski (1983) as well as Brown and Wegkamp (2002) for further develop-

ments of this line of research in econometrics. An estimation procedure that generalizes the minimum

distance method by Wolfowitz is studied by Bickel, Klassen, Ritov, and Wellner (1993), who call

it the Generalized Minimum Contrast (GMC) method; see Section 3 for more discussion on GMC.

The minimum contrast approach yields procedures that are robust against distribution assumptions,

though potentially at the cost of efficiency.
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It has been recognized that the notion of likelihood can be introduced in the empirical minimum

contrast framework just described above. This raises a conjecture: by using likelihood as a measure of

distance, it may be possible to develop a method that is robust against distributional assumptions yet

possesses good properties analogous to that of a parametric likelihood procedure. Remarkably, recent

research shows that this conjecture holds, at least for certain classes of models that are important in

econometrics. In particular, this idea yields a powerful and elegant procedure when applied to moment

condition models. In his important paper, Owen (1988) has coined term “empirical likelihood” for

this procedure. Its literature has been growing rapidly since then, as documented in Owen (2001).

The current paper illustrates the method by connecting it with two important existing statistical

frameworks, one being nonparametric MLE (NPMLE) and the other GMC. It also gives an updated

review of the literature and provides some practical guidance for applied econometricians.

2. EL as NPMLE

This section treats empirical likelihood as a nonparametric maximum likelihood estimation

procedure (NPMLE). The basic idea of NPMLE is simple. Suppose the econometrician observe IID

data {zi}n
i=1, where each zi is distributed according to an unknown probability measure µ. The

fundamental concept is the nonparametric (or empirical) log likelihood function:

(2.1) `NP(p1, ..., pn) =
n∑

i=1

log pi, where
n∑

i=1

pi = 1.

This can be interpreted as the log likelihood for a multinomial model, where the support of the

multinomial distribution is given by the empirical observations {zi}n
i=1, even though the distribution

µ of zi is not assumed to be multinomial. Rather, µ is left unspecified and therefore it is treated

nonparametrically. It is obvious that the maximum of the above log-likelihood function is attained at

pi = 1
n , therefore the empirical measure µn = 1

n

∑n
i=1 δzi (δz denotes a unit mass at z) can be regarded

as the nonparametric maximum likelihood estimator (NPMLE) for the unknown probability measure

µ. The maximum value of `NP is −n log n. See Bickel, Klassen, Ritov, and Wellner (1993) (Section

7.5 in particular) for a more rigorous derivation of the empirical measure µn as a NPMLE for µ.

The above example involves no model, but NPMLE works for well-specified econometric models

as well. Owen (1990) made a crucial observation that the nonparametric maximum likelihood method

shares many properties with conventional parametric likelihood when applied to moment condition
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models. Consider the model

(2.2) E[g(zi, θ)] =
∫
g(z, θ)dµ = 0, θ ∈ Θ ⊂ Rk.

where g is a known Rq-valued function. The unknowns in the above model are θ and µ. The symbols

θ0 and µ0 are used to denote the true values of θ and µ.

To apply NPMLE to (2.2), “parameterize” the model by (θ, p1, ..., pn) that resides in Θ ×∆,

where ∆ denotes the simplex {(p1, ..., pn) :
∑n

i=1 pi = 1, 0 ≤ pi, i = 1, ..., n}. The nonparametric

log-likelihood function to be maximized is

`NP =
n∑

i=1

log pi,
n∑

i=1

g(zi, θ)pi = 0.

The value of (θ, p1, ..., pn) ∈ Θ × ∆ that maximizes `NP is called the (maximum) empirical like-

lihood estimator and denoted by (θ̂EL, p̂EL1, ..., p̂ELn). The NPMLE for θ0 and µ0 are θ̂EL and

µ̂EL =
∑n

i=1 p̂ELiδzi . One might expect that the high dimensionality of the parameter space Θ × ∆

makes the above maximization problem difficult to solve for any practical application. Fortunately,

that is not the case. Instead of maximizing `NP with respect to the parameters (θ, p1, ..., pn) jointly,

first fix θ at a given value of θ and consider the log-likelihood with the parameters (p1, ..., pn) “profiled

out”:

(2.3) `(θ) = max `NP(p1, ..., pn) subject to
n∑

i=1

pi = 1,
n∑

i=1

pig(zi, θ) = 0.

Once this is done, maximize the profile likelihood `(θ) to obtain the empirical likelihood estimator. It

turns out that (2.3) is easy to solve numerically, as illustrated below.

The Lagrangian associated with the constrained optimization problem (2.3) is

L =
n∑

i=1

log pi + λ(1−
n∑

i=1

pi)− nγ′
n∑

i=1

pig(zi, θ),

where λ ∈ R and γ ∈ Rq are Lagrange multipliers. It is a straightforward exercise to show that the

first order conditions for L are solved by:

λ̂ = n, γ̂(θ) = argmin
γ∈Rq

−
n∑

i=1

log(1 + γ′g(zi, θ))), and

(2.4) p̂i(θ) =
1

n(1 + γ̂(θ)′g(zi, θ))
,
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yielding

(2.5) `(θ) = min
γ∈Rq

−
n∑

i=1

log(1 + γ′g(zi, θ)))− n log n.

The empirical likelihood estimator for θ0 is therefore

θ̂EL = argmax
θ∈Θ

`(θ) = argmax
θ∈Θ

min
γ∈Rq

−
n∑

i=1

log(1 + γ′g(zi, θ)).

The numerical evaluation of the function `(·) is easy, because (2.5) is a low dimensional convex

maximization problem, for which a simple Newton algorithm works. The maximization of `(θ) with

respect to θ is typically carried our using a nonlinear optimization algorithm. Once θ̂EL is calculated,

p̂ELi, i = 1, ..., n are obtained using the formula (2.4):

(2.6) p̂ELi =
1

n(1 + γ̂(θ̂EL)′g(zi, θ̂EL))
.

More computational issues will be discussed in Section 8.

Qin and Lawless (1994) derived the asymptotic distribution of the empirical likelihood estima-

tor. Let D = E[∇θg(z, θ0)] and S = E[g(z, θ0)g(z, θ0)′], then

(2.7)
√
n(θ̂EL − θ0)

d→ N(0, (D′SD)−1).

The asymptotic variance coincides with the semiparametric efficiency bound derived by Chamberlain

(1987). (Note that Chamberlain (1987) also uses a sequence of approximating multinomial models

in his argument.) It is interesting to observe that maximizing the nonparametric likelihood function

`NP for the moment condition model (2.2) automatically achieves efficiency. This is a semiparametric

analog of the standard result that maximizing the likelihood function of a parametric model yields

an efficient estimator. The estimator µ̂EL =
∑n

i=1 p̂ELiδzi is also an efficient estimator for µ in the

following sense. Suppose one wishes to estimate the expectation of a function a(z, θ0) of z, i.e.

E(a(z, θ0)) =
∫
a(z, θ0)dµ. Using µ̂EL, let ̂E(a(z, θ0)) =

∫
a(z, θ̂EL)dµ̂EL =

∑n
i=1 p̂ELia(zi, θ̂EL). This

estimator is more efficient than a naive sample mean such as 1
n

∑n
i=1 a(zi, θ̂EL), and can be shown to

be semiparametrically efficient, using a result obtained by Brown and Newey (2002).

Empirical likelihood also applies to testing problems. LetR denote a known Rs−valued function

of θ. Suppose the econometrician poses a hypothesis that θ0 is restricted as R(θ0) = 0 (and assume

that the s restrictions are independent). This can be tested by forming a nonparametric analog of the
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parametric likelihood ratio statistic

r = −2

(
sup

θ:R(θ)=0
`(θ)− sup

θ∈Θ
`

)
(2.8)

= −2

(
sup

θ:R(θ)=0
`(θ)− `(θ̂EL)

)
,

which obeys the chi-square distribution with s degrees of freedom asymptotically under the null that

R(θ0) = 0. This is called the empirical likelihood ratio (ELR) statistic. Another interesting possibility

is to define the empirical log likelihood ratio function

(2.9) elr(θ) = −2 [`(θ)− (−n log n)] = max
γ∈Rq

2
n∑

i=1

log(1 + γ′g(zi, θ))).

The first and the second terms in the square bracket are the maximized values of the log nonparamet-

ric likelihood with and without the restriction
∑n

i=1 pig(zi, θ) = 0, respectively. It can be shown that

its value at θ0, i.e. elr(θ0), obeys the χ2
q distribution asymptotically under (2.2) and mild regularity

conditions; see Owen (1991) and Section 3.5 of Owen (2001). Note that this procedure tests the

overidentifying restrictions (2.2) and the parametric restriction θ = θ0 jointly, since the restriction∑n
i=1 pig(zi, θ0) = 0 imposes the two restrictions simultaneously. Thus it is similar to the Anderson-

Rubin test (Anderson and Rubin (1949)) in its scope. Finally, if one wants to test the overidentifying

restrictions only, the restricted log likelihood in (2.9) is maximized under the constraint (2.2) but

treating θ as a free parameter, therefore the corresponding restricted and the unrestricted empirical

log-likelihood are `(θ̂RL) and −n log n, respectively. The empirical likelihood ratio statistic for the

overidentification hypothesis (2.2), therefore, is elr(θ̂EL). This statistic obeys the chi-square distribu-

tion with q − k degrees of freedom asymptotically.

Some may find having various versions of empirical likelihood ratio statistics rather confusing.

The following elementary relationships among the statistics might help to clarify this. Suppose one

wishes to test a parametric hypothesis of the form θ = θ0. Then the appropriate statistic is r =

−2
(
`(θ0)− `(θ̂EL)

)
, which is equal to

r = −2
(
`(θ0)− `(θ̂EL)

)
= [−2 (`(θ0) + n log n)]−

[
−2
(
`(θ̂EL) + n log n

)]
= elr(θ0)− elr(θ̂EL),
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or

(2.10) elr(θ0) = r + elr(θ̂EL).

This is similar to the decomposition noted in, for example, Stock and Wright (2000) (page 1066). The

last equation shows that the test statistic elr(θ0), which tests the k parametric hypotheses and q − k

overidentifying restrictions simultaneously, splits into the empirical likelihood ratio test statistic for

θ = θ0 and the empirical likelihood-based test of the overidentifying restrictions.

A moment condition model is a prime example for which nonparametric maximum likelihood

works very well. Note, however, that NPMLE has been applied to other models. For example, Cosslett

(1983) considers a binary choice model

yi = 1{x′iθ + εi > 0}, θ ∈ Θ ⊂ Rk

where εi is independent of xi. Here the unknown parameters are the finite dimensional parameter

θ and the distribution of ε. To put Cosslett’s estimator in our framework, consider a probability

measure for ε that puts probability mass of pi on each {−x′iθ}, i = 1, ..., n. Then the empirical log

likelihood (or the nonparametric log likelihood) for (θ, p1, ..., pn) is given by

`NP =
n∑

i=1

yi log

 n∑
j=1

1{x′jθ ≤ x′iθ}pi

+ (1− yi) log

1−
n∑

j=1

1{x′jθ ≤ x′iθ}pi

 .
Maximizing this empirical likelihood function for (θ, p1, ..., pn) over Θ×∆ yields Cosslett’s estimator.

Many other applications of NPMLE have been considered in the econometrics literature, e.g. Heckman

and Singer (1984); see also Cosslett (1997).

3. EL as GMC

3.1. GMC and Duality. This section offers an interpretation of empirical likelihood alternative to

the one as a nonparametric ML procedure given in the previous section. As noted by Bickel, Klassen,

Ritov, and Wellner (1993), it is useful to cast (parametric) MLE as a special case of the generalized

minimum contrast (GMC) estimation procedure. This principle can be applied here to construct a

family of estimators to which EL belongs as a special case. Consider a contrast function that measures

the divergence between two probability measures P and Q:

(3.1) D(P,Q) =
∫
φ

(
dP

dQ

)
dQ,

where φ is chosen so that it is convex. If P is not absolutely continuous with respect to Q, define the

divergence D to be ∞. D(·, P ) is minimized at P .
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The econometrician observes IID draws of an Rp−valued random variable z that obeys the

probability measure µ, and considers the model of the form (2.2). To interpret EL as a version of

GMC, introduce the following notation. Let M denote the set of all probability measures on Rp and

P(θ) =
{
P ∈ M :

∫
g(z, θ)dP = 0

}
.

Define

(3.2) P = ∪θ∈ΘP(θ),

which is the set of all probability measures that are compatible with the moment restriction (2.2).

The set P is called a statistical model. It is correctly specified if and only if P includes the true

measure µ as its member. At the population level, the GMC optimization problem is:

(3.3) inf
P∈P

D(P, µ) = inf
θ∈Θ

inf
P∈P(θ)

D(P, µ).

If the model is correctly specified, the minimum is attained by P = µ in the first expression and θ = θ0

in the second expression. (3.3) is a variational problem as the minimization problem infP∈P(θ)D(P, µ)

involves optimization over functions. Using a variational problem as a basis of estimation may seem

unpractical from a computational point of view. Fortunately, a duality theorem in the convex analysis

comes to rescue. For a value θ in Θ, consider the infinite dimensional constrained optimization problem

v(θ) = inf
P
D(P, µ) = inf

P

∫
φ

(
dP

dµ

)
dµ(P)

subject to
∫
g(z, θ)dP = 0,

∫
dP = 1,

where v(θ) is the value function corresponding a particular choice of θ. The primal problem (P) has

a dual problem

(DP) v?(θ) = max
λ∈R,γ∈Rq

[
λ−

∫
φ?(λ+ γ′g(z, θ))dµ

]
,

where φ? is the convex conjugate (or the Legendre transformation) of φ;1 see Borwein and Lewis

(1991). Note (DP) is a finite dimensional unconstrained convex maximization problem.

1For a convex function f(x), its convex conjugate f? is given by

f∗(y) = sup
x

[xy − f(x)] .
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The Fenchel duality theorem (see Borwein and Lewis (1991)) implies that2

(3.4) v(θ) = v?(θ).

Let (φ′)−1 denote the inverse of the derivative of φ, then the minimum of (P) is attained by P = P̄

such that:

(3.5) dP̄ (θ) = (φ′)−1(λ+ γ′g(z, θ))dµ.

See Borwein and Lewis (1991) for details. Equations (3.3), (P), (DP) and (3.4) show that θ0 solves

the minimization problem

(3.6) inf
θ∈Θ

v?(θ) = inf
θ∈Θ

max
λ∈R,γ∈Rq

[
λ−

∫
φ?(λ+ γ′g(z, θ))dµ

]
.

The preceding discussion focused on the population. Statistical procedures can be obtained by

replacing the unknown µ with the empirical measure µn. By (3.1) and (3.3), an appropriate sample

version of the GMC minimization problem is

(3.7) inf
P∈P,P�µn

1
n

n∑
i=1

φ(npi) = inf
θ∈Θ

inf
P∈P(θ),P�µn

1
n

n∑
i=1

φ(npi),

where pi denotes the probability mass that P puts on each point xi and P � µn means that P is

absolutely continuous with respect to µn. Equation (3.7) leads to the following definition of the GMC

estimator for θ:

θ̂ = argmin
θ∈Θ

v̂(θ), v̂(θ) = infPn
i=1 pig(zi,θ)=0Pn

i=1 pi=1

1
n

n∑
i=1

φ(npi).(3.8)

The formulation based on the sample version of the GMC problem corresponds to the use of “empirical

discrepancy statistics” by Corcoran (1998). See also Kitamura (1996b), where its is noted that the

discrepancy measure D(P, µ) =
∫
φ(dP

dµ )dµ is essentially the f−divergence by Csiszàr (1967). Newey

and Smith (2004) refer to the sample GMC-based estimator as the minimum distance estimator.

The duality theorem shows that (3.8) is equivalent to a computationally convenient form

(3.9) θ̂ = argmin
θ∈Θ

v̂?(θ), v̂?(θ) = max
λ∈R,γ∈Rq

[
λ− 1

n

n∑
i=1

φ?(λ+ γ′g(zi, θ))

]
,

obtained by replacing µ with µn in (3.6). This also yields a natural estimator for µ. The expression

(3.5) with µ replaced by µn yields

(3.10) ̂̄P (θ̂)(A) =
∫

A
(φ′)−1(λ+ γ′g(z, θ̂))dµn

2The nonnegativity of dP
dµ

is guaranteed if φ is modified appropriately as in Borwein and Lewis (1991).
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as an estimator for µ(A) for every Borel set A defined on the sample space of zi.

Choosing φ(x) to be − log(x) corresponds to empirical likelihood, because letting φ(x) =

− log(x) in (3.8) yields a GMC estimator of the form:

(3.11) θ̂ = argmin
θ∈Θ

infPn
i=1 pig(zi,θ)=0Pn

i=1 pi=1

1
n

n∑
i=1

− log(npi),

which is exactly the definition of the empirical likelihood estimator given in Section 2. Note that the

convex conjugate of φ(x) = − log(x) is φ?(y) = −1 − log(−y). Using this expression in (3.9) and

concentrating λ out, obtain

θ̂ = argmin
θ∈Θ

max
λ∈R,γ∈Rq

[
λ+ 1 +

1
n

n∑
i=1

log(−λ− γ′g(zi, θ))

]
(3.12)

= argmin
θ∈Θ

max
γ∈Rq

[
1
n

n∑
i=1

log(1 + γ′g(zi, θ))

]
.

The last expression again matches the characterization of the EL estimator provided in Section 2,

showing that the somewhat mysterious “saddle point” formulation of the EL estimator provided there

is a natural consequence of the Fenchel duality. According to the original definition, the EL estimator

solves the two fold minimization problem (3.11); it is an estimator that minimizes a contrast function.

But its dual form (3.12) replaces the second minimization in (3.11) with a (computationally more

tractable) low-dimensional maximization problem, thereby yielding the saddle point formula (3.12).

Note also that the form of the contrast function corresponding to the choice φ(x) = − log(x) is

D(θ, µ) = inf
P∈P(θ)

∫
log

dµ

dP
dµ = inf

P∈P(θ)
K(µ, P ),

where K(P,Q) =
∫

log dP
dQdP denotes the Kullback-Leibler (KL) divergence between probability mea-

sures P and Q. That is, the EL estimator solves the minimization problem

(3.13) inf
θ∈Θ

inf
P∈P(θ)

K(µn, P ) = inf
P∈P

K(µn, P ).

The fact that empirical likelihood minimizes the KL divergence between the empirical measure µn

and the moment condition model P plays an important role in the analysis of empirical likelihood

with the large deviations theory presented in Section 4.

Choices of φ other than − log have been considered in the literature. Let φ(x) = x log(x), then

the contrast function evaluated at P is D(P, µ) =
∫

log dP
dµ dP = K(P, µ). This is similar to empirical

likelihood in that the contrast function is given by the KL divergence, but note that the roles of P and
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µ are reversed. The Legendre transform of φ(x) is φ?(y) = ey−1. Using this in (3.9) and concentrating

λ out, one obtains θ̂ as a solution to

(3.14) inf
θ∈Θ

max
γ∈Rq

[
− 1
n

n∑
i=1

eγ
′g(zi,θ)

]
.

This is the saddle-point estimator proposed by Kitamura and Stutzer (1997). It is sometimes called

the exponential tilting estimator for θ. Note that φ′−1(y) = ey−1 for this case, so the definition (3.10)

yields

(3.15) ̂̄P (θ̂)(A) =
∫

A
eγ̂

′g(zi,θ̂)dµn

where γ̂ is the parameter value at the saddle-point of (3.14).

Yet another popular choice of φ is φ(x) = 1
2(x2−1), which yields D(P, µn) = 1

2n

∑n
i=1(npi−1)2.

This is called the “Euclidean likelihood” by Owen (1991). Its Legendre transformation is φ?(y) =
1
2(y2 +1). In this case the numerical optimization to evaluate the function v̂?(θ), θ ∈ Θ is unnecessary.

Let ḡ(θ) = 1
n

∑n
i=1 g(zi, θ) and Ŝ = 1

n

∑n
i=1[g(zi, θ) − ḡ(θ)][g(zi, θ) − ḡ(θ)]′. It is easy to see that for

the quadratic φ? the maximization problem that defines v̂?(θ) (see (3.9)) has an explicit solution and

the resulting GMC estimator solves

inf
θ∈Θ

ḡ(θ)′Ŝ−1(θ)ḡ(θ).

Therefore, the choice φ(x) = 1
2(x2 − 1) leads to the continuous updating GMM estimator by Hansen,

Heaton, and Yaron (1996); this connection between (continuous updating) GMM and Euclidean like-

lihood is noted in Kitamura (1996b).

Finally, Baggerly (1998), Kitamura (1996b) and Newey and Smith (2004) suggest using the

Cressie-Read divergence family, which corresponds to the choice φ(x) = 2
α(α+1)(x

−α − 1) indexed by

the parameter α. The conjugate φ? of φ in this case is given by φ?(y) = − 2
α

[
−α+1

2 y
] α

α+1 + 2
α(α+1) .

Using this φ? in (3.9) yields the estimation procedure in Theorem 2.2 of Newey and Smith (2004).

Parameter values α = −2,−1, 0 and 1 yield Euclidean likelihood, exponential tilt, empirical likelihood

and Pearson’s χ2, respectively.

3.2. GMC and GEL. It is unnecessary to use a specific function or a specific parametric family of

functions for φ or φ? to define a GMC estimator θ̂. Kitamura (1996b) suggests a general family of

estimator by considering φ’s that are convex functions on (0,+∞). Alternatively, one may use the

dual representation instead to define a class of estimators

{θ̂ = argmin
θ∈Θ

max
λ∈R,γ∈Rq

[λ− 1
n

n∑
i=1

φ?(λ+ γ′g(zi, θ))] : φ? is convex}.
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If φ takes the form of the Cressie-Read family, then φ? is convex and homogeneous (plus an additive

constant). Consequently, concentrating λ out and re-defining γ as γ/λ yields θ̂ as

(3.16) θ̂ = argmin
θ∈Θ

max
γ∈Rq

[
− 1
n

n∑
i=1

φ?(1 + γ′g(zi, θ))

]
.

Define ρ(y) = −φ∗(y + 1), then

(3.17) θ̂ = argmin
θ∈Θ

max
γ∈Rq

[
1
n

n∑
i=1

ρ(γ′g(zi, θ))

]
.

This is essentially equivalent to the Generalized Empirical Likelihood (GEL) estimator by Smith

(1997), though his original derivation of GEL is based on an interesting application of the method

of Chesher and Smith (1997). It is therefore quite different from the GMC-based derivation outlined

above. Also, Smith’s formulation of GEL demands only concavity on ρ in (3.17). The GEL family and

the GMC family therefore do not completely coincide, though the difference between the two does not

seem to matter much for practitioners as they both include commonly used estimators such as EL,

exponential tilt and continuous updating as special cases. Smith (2004) provides a detailed account

for GEL.

3.3. Some Properties. The procedures based on GMC or GEL share some common properties.

First, both family yield estimators that have the same asymptotic distribution as in (2.7) under

reasonable conditions; see Kitamura and Stutzer (1997), Smith (1997), Imbens, Spady, and Johnson

(1998) and Newey and Smith (2004). It is well known that the two step (optimal) GMM (Hansen

(1982)) also yields the same first order asymptotics. Second, the value of the objective function can be

used for inference. It has already been observed in Section 2 that one can construct a nonparametric

analogue of the likelihood ratio statistic which has an appropriate χ2-distribution asymptotically.

This carries over to the procedures discussed in Section 3. For example, suppose one is interested in

testing the null hypothesis that θ0 ∈ Θ0 ⊂ Θ,dim(Θ0) = k − s in (2.2)3, which puts s restrictions on

the parameter space for θ. Under the hypothesis, the difference in the constrained and unconstrained

objective function values obeys the following asymptotic distribution:

(3.18) − 2
(

inf
θ∈Θ

v̂(θ)− inf
θ∈Θ0

v̂(θ)
)

d→ χ2
s.

Third, a similar argument applies to overidentifying restrictions testing. One can use the maximum

value of the GMC objective function to test the null hypothesis that µ ∈ P (i.e. the model is correctly

3This requirement refers to the local dimension of Θ0 at θ0. Here and henceforth the symbol dim is often used to

denote such local dimensions.
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specified, or the overidentifying restrictions hold). Under this null,

inf
θ∈Θ

2v̂(θ) d→ χ2
q−k.

Smith (2000) discusses various EL-based specification tests for (2.2). See also Ramalho and Smith

(2002).

Asymptotic properties similar to those presented above also hold for the conventional two-step

GMM (Hansen (1982)), but there are distinctive features of GMC/GEL that are not shared by the

two-step GMM. Subsequent sections investigate those properties theoretically, though some informal

arguments that have been often made in favor of GMC/GEL-type estimators are worth noting here.

The two-step GMM requires a preliminary estimator of the weighting matrix, which often causes

problems in finite samples, whereas GMC or GEL avoids explicit estimation of it. Some theoretical

advantages associated with this fact are discussed in Section 5, though one interesting consequence

is the normalization invariance property of GMC/GEL. Suppose one obtains a moment condition of

the form (2.2) as an implication of the economic model. It is obvious that one can replace g by

g̃ = Ag, where A(θ) is a nonsingular matrix that can depend on θ, and obtain an equivalent condition

E[g̃(z, θ0)] = 0, θ0 ∈ Θ. There should be no economic reason to prefer one representation over the

other. The two-step GMM, however, yields different results in finite samples, depending on the choice

of A. See Gali and Gertler (1999) for an example of this phenomenon in an actual empirical setting.

All the estimators discussed in the previous section are invariant with respect to the choice of A.

The properties described above are interesting and desirable, though more theoretical develop-

ments are required to uncover decisive advantages of GMC/GEL estimators, and, in particular, those

of empirical likelihood. This will be the main theme of the next two sections.

4. Large Deviations

One can pick an arbitrary convex function φ in GMC (or a concave function ρ in GEL) to

define an estimator. This introduces a great deal of arbitrariness in estimating (2.2), and raises a

natural and important question: which member of GMC (or GEL) should be used? Theoretical,

practical and computational considerations are necessary to answer this question. This section and

the next attempt to provide theoretical accounts, followed by more practical discussions in Section 8.

Note that the results in this section provide a theoretical answer to the above question, but they have

further implications. The optimality result here holds for a class of very general statistical procedures,

including those which do not belong to GMC or GEL.
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The conventional first-order, local asymptotic theory discussed in Sections 2 and 3 predicts

identical asymptotic behavior for members of GMC/GEL estimators as far as the moment condition

model (2.2) is correctly specified. Likewise, all comparable tests that belong to these families share

identical properties under appropriate null and local alternative hypotheses. This is a consequence of

the fundamental nature of the conventional asymptotic distribution theory, which relies on first order

linear approximations. In reality, however, these estimators and tests can behave wildly differently in

finite samples (see, for example, simulation results in Kitamura (2001) and Kitamura and Otsu (2005)).

While the conventional asymptotic method is a useful device, it is important to explore approaches

that go beyond local first order approximations to resolve these problems. At least two alternative

approaches exist. One approach, taken by some researchers, is to explore local higher order asymptotic

theory. This often yields useful and insightful results as will be discussed in Section 5, though it

generally involves rather intricate calculations and delicate regularity conditions. Alternatively, first-

order, global efficiency properties of GMC can be explored. Taking this approach enables us to

evaluate the statistical implications of global and nonlinear structures of various GMC estimators not

captured by local linear theory. This is a powerful tool for studying differences in the behavior of

GMM, empirical likelihood and other estimators. Such an investigation belongs to the domain of the

so-called large deviation theory, which is the theme of the current section.

The rest of this section covers two topics. The first is the large deviation theory of estimation

in the moment condition model (2.2). The second is the large deviations analysis of various hypothesis

testing problems, including inference concerning θ as well as testing the overidentifying restrictions

of the model. Interestingly, in both cases empirical likelihood (i.e. GMC with φ(x) = − log(x))

yields optimality results, implying that empirical likelihood has a special status among competing

procedures. Note, however, that obtaining an optimal estimator in terms of large deviations requires

some modifications to the maximum empirical likelihood estimator discussed in Sections 2 and 3.

4.1. Large Deviations and Minimax Estimation. Consider again the moment condition model

(2.2). θ0, or its subvector, is the parameter of interest. The conventional asymptotic efficiency theory

focuses on the behavior of estimators in a shrinking neighborhood of the true parameter value. In

contrast, efficiency theory with LDP deals with a fixed neighborhood of the true value. For an

estimator θn, consider the probability that it misses the true value θ0 by a margin exceeding c > 0

(4.1) Pr{‖θn − θ0‖ > c},

where ‖ · ‖ is the (Euclidean) norm.
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The expression (4.1) can be interpreted as the expected risk E[L(θ̂)] of the estimator θn under

the loss function L(θ) = 1{‖θn − θ0‖ > c}. It should be emphasized that other loss functions can be

employed. It is generally possible to derive a large deviation optimal estimator under an alternative

loss function, at least at the theoretical level. The treatment here focuses on the indicator loss function,

however. It is a natural loss function, and commonly used in the literature (e.g. Bahadur (1964)).

A nice feature of the indicator loss is that it leads to a practical and computationally convenient

procedure, as discussed later in this section.

The parameter c in (4.1) is a loss function parameter that is chosen by the decision maker (i.e.

the econometrician). In a typical empirical application, the econometrician would tolerate estimation

errors within a certain margin. If one subscribes to the view that a model is an approximation of

reality, it would be natural to allow a certain margin of error. Also, a number of authors argued the

importance the concept of “economic significance” in econometrics; with that view, c can be chosen by

considering a range within which errors are economically insignificant. In sum, c should be determined

based on economic considerations. As an example, suppose the risk aversion parameter in a dynamic

optimization model of consumers is being estimated. The econometrician then would have a range

within which differences in the degree of risk aversion are economically not significant. The parameter

c is a part of the econometrician’s loss function and therefore should be decided based on the economic

meaning of the parameter.

Once the parameter c is chosen, the next step is to make the probability (4.1) “small.” The

precise meaning of “small” will be defined shortly.

Evaluating (4.1) in finite samples is unrealistic unless the model is completely specified and

extremely simple. On the other hand, simply letting n go to infinity is not informative, as the limit

would be either 1 or 0 depending on whether θn is consistent or not. The theory of large deviations

focuses on the asymptotic behavior of

(4.2) (Pr{‖θn − θ0‖ > c})n .

or its logarithmic version

(4.3)
1
n

log (Pr{‖θn − θ0‖ > c}) .

Letting n go to infinity in the latter gives the negative of the asymptotic decreasing rate of the

probability that the estimator misses the true value by a margin that exceeds c. The goal would

be then to make this limit as small as possible. The problem of minimizing the rate as in (4.3) has
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been considered in the context of parametric estimation, e.g. Bahadur (1960) and Fu (1973). These

studies, however, usually require that the model belongs to the exponential family and do not extend

to other models.

The moment condition model (2.2) is not a member of the exponential family, but there is a

way to proceed. Kitamura and Otsu (2005) note that an asymptotic minimax criterion leads to an

estimator for θ that possesses optimal properties in terms of large deviations, by using an approach

proposed by Puhalskii and Spokoiny (1998). Consider, instead of (4.3), its maximum over all possible

combinations of (θ, P ):

(4.4) sup
θ∈Θ

sup
P∈P(θ)

1
n

log
(
P⊗n{‖θn − θ‖ > c}

)
,

where P⊗n = P ⊗ P ⊗ · · · ⊗ P denotes the n-fold product measure of P . (Since zi ∼iid P , the sample

obeys the law (z1, ..., zn) ∼ P⊗n.)

Let B ≤ 0 denote an asymptotic lower bound for (4.4), that is,

(4.5) lim inf
n→∞

inf
θn∈Fn

sup
θ∈Θ

sup
P∈P(θ)

1
n

log
(
P⊗n{‖θn − θ‖ > c}

)
≥ B,

where Fn denotes the set of all Θ-valued measurable functions of data (z1, ..., zn), i.e. the set of all

estimators. The following constant B∗ satisfies (4.5):

(4.6) B∗ = sup
Q∈M

inf
θ∗∈Θ

sup
θ∈Θ:‖θ∗−θ‖>c

sup
P∈P(θ)

−K(Q,P ).

(Recall M denotes the set of all probability measures on Rp.) Moreover, this bound B∗ turns out to

be tight, therefore called the asymptotic minimax bound. The qualification “asymptotic” refers to

lim infn→∞, whereas the term “minimax” corresponds to the operation infθn∈Fn supθ∈Θ supP∈P(θ).

Indeed, the minimax bound (4.6) can be achieved by an estimator based on empirical likelihood

function (Kitamura and Otsu (2005)). Let θ̂ld denote the minimizer of the objective function

Qn(θ) = sup
θ∗∈Θ:‖θ∗−θ‖>c

`(θ∗),

where `(·) is the log empirical likelihood function defined in (2.5). The estimator θ̂ is a minimax

estimator in the large deviation sense, as it reaches the bound B∗ asymptotically:

lim
n→∞

sup
θ∈Θ

sup
P∈P(θ)

1
n

log
(
P⊗n{‖θ̂ld − θ‖ > c}

)
= B∗.

See Kitamura and Otsu (2005) for a proof. Note that θ̂1
ld generally differs from the empirical likelihood

estimator θ̂EL, unless, say, the sample empirical likelihood function `(·) is symmetric around θ̂EL.
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Practical implementation of θ̂ld is straightforward, at least when k = dim(Θ) is low, since the objective

function Qn is a rather simple function of the log empirical likelihood `(·), whose numerical evaluation

is easy (see Sections 2, 3 and 8).

If the dimension of θ is high, it is also possible to focus on a low dimensional sub-vector of θ

and obtain a large deviation minimax estimator for it, treating the rest as nuisance parameters. This

is potentially useful in practice, since it is often the case that a small number of “key parameters” in

a model are economically interesting. Even in a case where every element of θ is important, one may

want to apply the following procedure to each component of θ to lessen computational burden. Wlog,

let θ = (θ1′, θ2′)′, where θ1 ∈ Θ1. Suppose the researcher chooses the loss function 1{‖θ1−θ1
n‖ > c} to

evaluate the performance of an estimator θ1
n for θ1. The corresponding maximum (log) risk function

is given by

(4.7) sup
θ∈Θ

sup
P∈P(θ)

1
n

log
(
P⊗n{‖θ1

n − θ1‖ > c}
)
.

The limit inferior of the above display is bounded below by

B∗1 = sup
Q∈M

inf
θ1∗∈Θ1

sup
θ∈Θ:‖θ1∗−θ1‖>c

sup
P∈P(θ)

−K(Q,P ).

Let θ̂1
ld minimize the function

Q1
n(θ1) = sup

θ∗∈Θ:‖θ1∗−θ1‖>c

`(θ∗).

This is a minimax estimator, in the sense that it achieves the lower bound of the maximum risk (4.7)

asymptotically:

lim
n→∞

sup
θ∈Θ

sup
P∈P(θ)

1
n

log
(
P⊗n{‖θ̂1

ld − θ1‖ > c}
)

= B∗1 .

If the parameter of interest θ1 is scalar, it is possible to provide an interesting and practically

useful characterization of the minimax estimator θ̂1
ld. Assume, for the sake of argument, that the

minimum of Q1
n is attained uniquely by θ̂1

ld. Then

θ̂1
ld = argmin

θ1∈Θ1

sup
θ∗∈Θ:|θ1∗−θ1|>c

`(θ)(4.8)

= argmin
θ1∈Θ1

sup
θ∗1∈Θ1:|θ1∗−θ1|>c

sup
θ2∗

`(θ1∗, θ2∗)

= argmin
θ1∈Θ1

sup
θ∗1∈Θ1:|θ1∗−θ1|>c

`1(θ1∗),
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where `1(θ1) = supθ2 `(θ1, θ2) is the log empirical likelihood function with the nuisance parameter θ2

profiled out. Imagine the function `1(·) plotted against the parameter space Θ1 of θ1, which is (a

subset of) R. Choose a level set of `1(·) so that its length is 2c, then the estimator θ̂1
ld is the midpoint

of the level set. To see this, notice that the last expression in (4.8) indicates that the value of θ̂1
ld is

chosen so that the maximum of `1 outside of the c-ball with center θ̂1
ld becomes as small as possible.

If an alternative value θ̌1 in place of θ̂1
ld is used, the c-ball around it will exclude some points where

the values of `1(·) are higher than Q1
n(θ̂1

ld), making Q1
n(θ̌1) larger than Q1

n(θ̂1
ld). This is true for any

θ̌1 6= θ̂1
ld, therefore θ̂1

ld minimizes Q1
n.

The above characterization of θ̂1
ld implies that the estimator can be interpreted as a “robustified”

version of the original empirical likelihood estimator. Again, imagine the profiled empirical likelihood

function `1 plotted against the space of θ1. Suppose the function has a “plateau” of length 2c. This

should include the maximizer of `1, but the maximum can occur at a point that is close to one of

the end points of the plateau. The empirical likelihood estimator “follows” small fluctuations over

the plateau, since it has to correspond to the exact maximum. In contrast, the minimax estimator

always chooses the center of the plateau and therefore is robust against these small fluctuations. This

is reminiscent of arguments that favor a posterior mean Bayes estimator over MLE, on the ground

that the former takes a weighted average of the likelihood function and is more robust against sample

fluctuations of the likelihood function than the latter. This interpretation of θ̂1
ld as a robustified

estimator applies to the case where θ1 is multi-dimensional as well.

The preceding discussion described the new procedure as a point estimator, though it may be

better understood as a fixed-length interval estimation method. The concept of fixed-length interval

estimators can be found, for example in Wald (1950). As before, let θ1 denote the parameter of interest

in the vector θ and suppose it is a scalar. Consider the set In of interval estimators In of length 2c for

θ1. From the above discussion, the large deviation probability of such an interval not containing the

true value is asymptotically bounded from below by B∗1 , which is attained by the interval estimator

Îld = [θ̂1
ld − c, θ̂1

ld + c]. That is,

lim inf
n→∞

inf
In∈In

sup
θ∈Θ

sup
P∈P(θ)

1
n

log
(
P⊗n{θ1 /∈ In}

)
= B∗1 = lim

n→∞
sup
θ∈Θ

sup
P∈P(θ)

1
n

log
(
P⊗n{θ1 /∈ Îld}

)
.

The interval estimator Îld is therefore optimal. θ̂1
ld is not necessarily consistent when viewed as a point

estimator, but the corresponding Îld is consistent in the sense that it contains the true parameter value

with probability approaching 1.
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The choice of the parameter c should be determined by the goal of the economic analysis as

discussed at the beginning of this section, though some further remarks on this issue are in order.

First, experimental results from Kitamura and Otsu (2005) suggest that a wide range of values

of c work for realistic sample sizes. See Section 8 for more information on finite sample properties of

the minimax estimator and other estimators.

Second, it is reasonable to assume that the researcher would choose a smaller value of c, when a

larger data set is available and therefore more accurate estimation would be possible. If one calculates

θ̂1
ld for a sequence of constants {cn}∞n=1 that converges to 0 slowly, the estimator is consistent as a

point estimator, while it may be still possible to show that it has an asymptotic optimality property.

Such an investigation would involve the theory of moderate deviations, which has been applied to

estimation problems; see, for example, Kallenberg (1983).

4.2. Minimax Testing. Section 4.1 applied an asymptotic minimax approach to parameter estima-

tion. Kitamura and Otsu (2005) show that the similar approach (cf. Puhalskii and Spokoiny (1998))

leads to a testing procedure that has a large deviation minimax optimality property in the model

(2.2). Let Θ0 be a subset of the parameter space Θ of θ. Consider testing

H0 : θ ∈ Θ0

against

H1 : θ ∈ Θc
0

(Θc
0 denotes the complement of Θ0 in Θ). To derive a minimax test, a few decision theoretic concepts

are useful. The econometrician observes the data {z1, ..., zn} to reach a decision to accept H0 or reject

it in favor of H1. So it can be represented by a binary-valued function dn = dn(z1, ..., zn), taking the

value of 0 if H0 is accepted and the value of 1 otherwise. An appropriate loss function for decision dn

is

L(dn) = w1{dn = 1,H0 holds}+ (1− w)1{dn = 0,H1 holds}

where the weighting factor w belongs to [0, 1]. The econometrician chooses w; as seen below, this

parameter determines the critical value of the minimax test. Applying the same argument as in

Section 4.1 yields a decision function that is large deviation minimax optimal. Let P0 = ∪θ∈Θ0P(θ)

and P1 = ∪θ∈Θ1P(θ). The maximum log expected risk, normalized by 1
n is:

1
n

max
{

log(wn sup
P∈P0

P⊗n{dn = 1}), log((1− w)n sup
P∈P1

P⊗n{dn = 0})
}
.
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This corresponds to (4.4) in the estimation problem. The limit inferior of the above display (as n

tends to infinity) is bounded below by

C∗ = sup
Q∈M

min
{

logw + sup
P∈P0

−K(Q,P ), log(1− w) + sup
P∈P1

−K(Q,P )
}
.

It can be shown that this large deviation bound is attained by the following decision function

(4.9) d̂ld = 1{log
w

1− w
< sup

θ∈Θ
l(θ)− sup

θ∈Θ0

l(θ)},

that is,

lim
n→∞

1
n

max
{

log(wn sup
P∈P0

P⊗n{d̂ld = 1}), log((1− w)n sup
P∈P1

P⊗n{d̂ld = 0})
}

= C∗

if 1
2 ≤ w ≤ 1. (If the econometrician chooses w that is less than 1

2 , d̂ld needs to be modified so that

the first supremum in the above definition of d̂ld is taken over Θ1.) The testing procedure (4.9) is the

empirical likelihood ratio (ELR) test for H0 with critical value 2 log w
1−w as described in Section 2; see

also Equation (3.18). That is, ELR is minimax, large deviation optimal for testing H0 against H1.

4.3. GNP-Optimal Testing. Specification analysis of moment condition models is often carried

out using the GMM-based overidentifying restrictions test by Hansen (1982). The null hypothesis of

Hansen’s test takes the form (2.2), that is, the moment condition holds for some θ in Θ. It can be

expressed using the notation in Section 3.3 as:

(H) µ ∈ P.

Previous sections introduced alternative tests for (H), including the ELR overidentification test based

on elr(θ̂EL); see Equation (2.9) and discussions thereafter.

Again, the existence of alternative procedures raises the question of which test should be used.

Various asymptotic efficiency criteria can be applied for comparing competing tests for (H). See

Serfling (1980) for a comprehensive catalog of asymptotic efficiency criteria. Among them, the well-

known Pitman efficiency criterion uses local first-order approximations and is not informative here,

for the same reason discussed at the beginning of this section. The asymptotic efficiency criterion

by Hoeffding (1963), however, reveals that the ELR test is optimal in a asymptotic large deviations

sense. This conclusion, obtained by Kitamura (2001), is in a sense stronger than the results in the

previous section on parametric hypothesis testing. It claims that the ELR is uniformly most powerful,

whereas the previous result is about minimax optimality. This kind of property is sometimes called a

Generalized Neyman-Pearson (GNP) type lemma.
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As before, a test is represented by a sequence of binary functions dn = dn(z1, ..., zn), n = 1, 2, ...

which takes the value of 0 if the test accept (H) and 1 otherwise. The conventional asymptotic

power comparison is based on the type II error probabilities of tests that have comparable type I

error probabilities. Hoeffding (1963) takes this approach as well, but he evaluates type I and type II

errors using LDP. In the present context, size properties of competing tests are made comparable by

requiring that, for a parameter η > 0, each test dn satisfies

(L) sup
P∈P

lim sup
n→∞

1
n

logP⊗n{dn = 1} ≤ −η

Therefore η determines the level of a test via large deviations.

Now, use the η in (L) to define the ELR test as follows:

dELR,n =

0 if 1
2nelr(θ̂EL) ≤ −η

1 otherwise.

Kitamura (2001) shows the following two facts under weak regularity conditions.

(I) dELR,n satisfies the condition (L).

(II) For every test dn that satisfies (L),

lim sup
n→∞

1
n

logP⊗n{dn = 0} ≥ lim sup
n→∞

1
n

logP⊗n{dELR,n = 0}

for every P /∈ P.

Fact (I) shows that the large deviation rate of the type I error probability of the ELR test defined as

above satisfies the size requirement (L). The left hand side and the right hand side of the inequality

in Fact (II) correspond to the LDP of the type II errors of the arbitrary test dn and that of the ELR

test dELR,n, respectively. The two facts therefore mean that, among all the tests that satisfies the

LDP level condition (L) (and the regularity conditions discussed in Kitamura (2001)), there exists no

test that outperforms the ELR test in terms of the large deviation power property. Note that Fact

(II) holds for every P /∈ P, therefore ELR is uniformly most powerful in terms of LDP. That is, ELR

is a GNP test.

To illustrate this result, take the simplest example: suppose zi ∼iid P, i = 1, ..., n and E[zi] =

m ∈ R. The null hypothesis m = m0 is tested against m 6= m0. In absence of further distributional

assumptions, a standard procedure described in textbooks is to carry out a large sample test based on

the statistic n(z̄ −m0)2/ŝz, where z̄ = 1
n

∑n
i=1 zi and ŝz is a consistent estimator for the variance of

z. The above result shows that the standard procedure as above is suboptimal, since the ELR is the
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uniformly most powerful in Hoeffding’s criterion. The simulation experiments reported in Section 8.2.2

considers this setting and provides strong support for the theoretical implications described above.

4.4. EL, Large Deviations, and Sanov’s Theorem. The analysis in the previous two sections

shows various efficiency properties of empirical likelihood in terms of large deviations. This phenom-

enon is by no means a coincidence. The fundamental reason why empirical likelihood emerges as an

optimal procedure comes from a LDP for empirical measures, called Sanov’s theorem (Sanov (1961);

see also Deuschel and Stroock (1989), Theorem 3.1.17.). Suppose zi ∼iid µ, i = 1, ..., n, and equip

the space of all probability measures M with the topology of weak convergence. For an arbitrary set

G ∈ M, let Go and Ḡ denote the interior and the closure of G, respectively. Sanov’s Theorem shows

that the empirical measure µn satisfies

lim inf
n→∞

1
n

log Pr(µn ∈ Go) ≥ − inf
ν∈Go

K(ν, µ)

lim sup
n→∞

1
n

log Pr(µn ∈ Ḡ) ≤ − inf
ν∈Ḡ

K(ν, µ).

Put loosely, the probability that the empirical measure falls into the set G is governed by the minimum

value of the Kullback-Leibler divergence number between the probability measure and G. The moment

condition model is represented by the set P, so it is reasonable to expect that using the minimum KL

divergence infP∈P K(µ, P ), or more precisely, its empirical version infP∈P K(µn, P ), as a statistical

criterion leads to optimal procedures. As seen in (3.13), however, empirical likelihood solves the

empirical KL minimization problem and therefore often achieves optimality in a large deviations

sense. The choice of φ(x) = − log(x) emerges naturally from the LDP, not as a consequence of an

arbitrary and artificial choice of an econometric objective function.

5. Higher Order Theory

The LDP-based approach, presented in the previous section, utilized global first order approxi-

mations of empirical likelihood and other related methods. This section presents some results from an

alternative approach based on local higher order approximations. Interestingly, the two quite different

approaches tend to yield similar conclusions; empirical likelihood often exhibits desirable properties

in terms of higher order comparisons as well, though there are some differences in the conclusions

obtained from the two approaches.

5.1. Estimation. Newey and Smith (2004) investigate higher order properties of the GEL family of

estimators. They find that GEL estimators have good properties in terms of the second order bias.
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Moreover, empirical likelihood has a special bias reducing property among the GEL estimators. To

illustrate their findings, it is instructive to consider the conventional two step GMM estimator for (2.2)

and compare it with GEL estimators. Write D̄(θ) = 1
n

∑n
i=1∇θg(zi, θ), S̄(θ) = 1

n

∑n
i=1 g(zi, θ)g(zi, θ)

′

and ḡ(θ) = 1
n

∑n
i=1 g(zi, θ). The two step GMM, denoted by θ̂GMM, based on a preliminary estimator

θ̌ is a root of the following first order condition:

(5.1) D̄(θ̂GMM)′S̄(θ̌)−1ḡ(θ̂GMM) = 0.

This can be regarded as a feasible version of the infeasible optimally weighted sample moment condition

with D = E[∇θ0g(z, θ)], S = E[g(zi, θ0)g(zi, θ0)′], which would yield an “ideal” estimator θ̂ideal as its

root:

(5.2) D′S−1ḡ(θ̂ideal) = 0.

The effect of replacing D and S with D̄(θ̂GMM) and S̄(θ̌) is negligible in the conventional first order

asymptotics by Slutsky’s theorem. These terms, however, do affect the bias of θ̂GMM of order O( 1
n) for

two reasons. First, even evaluated at the true value θ0, these two sample moments are correlated with

the sample mean of g, and these correlations show up in the second order bias term of θ̂GMM. Second,

the effect of the preliminary estimator θ̌ also appears in the second order bias term. In particular, the

first effect from the correlations tend to grow with the number of moment conditions q. See Newey

and Smith (2004), Donald, Imbens, and Newey (2003) and Imbens and Spady (2006).

The situation changes for the EL estimator θ̂EL. Appendix shows that the first order condition

for θ̂EL, using the notation D̂(θ) =
∑n

i=1 p̂ELi∇θg(zi, θ) and Ŝ(θ) =
∑n

i=1 p̂ELig(zi, θ)g(zi, θ)′, can be

written as:

(5.3) D̂(θ̂EL)′Ŝ−1(θ̂EL)ḡ(θ̂EL) = 0;

see Theorem 2.3 of Newey and Smith (2004) as well as Donald and Newey (2000). This is similar to

the first order condition (5.1) for GMM, though there are important differences. Notice that D and

S that appear in the “ideal” first order condition (5.2) are estimated by D̂(θ̂EL) and Ŝ(θ̂EL) in (5.3).

These are semiparametrically efficient estimators of D and S under the moment restriction (2.2), as

discussions in Section 2 imply. This means that they are asymptotically uncorrelated with ḡ(θ0),

removing the important source of the second order bias of GMM. Moreover, the EL estimator does

not involve a preliminary estimator, thereby eliminating the other source of the second order bias in

GMM mentioned above. Newey and Smith (2004) formalize this intuition and obtain an important

conclusion that the second order bias of the EL estimator is equal to that of the infeasible “ideal”
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estimator θ̂ideal. Schennach (2004) and Ragusa (2005) present interesting higher-order asymptotic

results that are closely related to those of Newey and Smith (2004).

Some, if not all, of the nice second bias properties of EL are shared by other members of the

GEL (or GMC) family. Newey and Smith (2004) observe that the Jacobian term D in the first order

condition of GEL estimators is efficiently estimated, therefore the second order bias term due to the

correlation between ḡ and the estimator for D is absent. Also, they are free from second order bias

from preliminary estimation, because they are one-step estimators. Therefore they possess merits over

GMM in terms of higher order bias due to these factors.

In general, however, members of GEL other than EL have first order conditions where S is

not efficiently estimated, and this can potentially cause bias through its correlation with ḡ. To see

this point, take the continuous updating GMM estimator (CUE), which is a member of GMC as

discussed in Section 3. Let D̃(θ) = ∇θḡ(θ) −
(

1
n

∑n
i=1∇θg(zi, θ)g(zi, θ)

)
S̄−1(θ)ḡ(θ), then the first

order condition for CUE is

(5.4) D̃(θ̂cue)′S̄−1(θ̂cue)ḡ(θ̂cue) = 0

(see Appendix). The term subtracted from∇θḡ(θ̂cue) in D̃(θ̂cue) makes it a semiparametrically efficient

estimator for D. S̄(θ̂cue), however, is just a sample average and therefore not an efficient estimator

for S; see Brown and Newey (2002). This, in turn, contributes to the second order bias of the

continuous updating GMM. It has been recognized that the effect of the estimated weighting matrix

of GMM is an important source of bias; see Altonji and Segal (1996) for an experimental study on

this problem. Altonji and Segal (1996), based on their finding, recommend using the q−dimensional

identify matrix for weighting ḡ to avoid this problem, though this solution has the cost of not being

efficient asymptotically. The higher order theory reviewed in this section suggests that empirical

likelihood successfully addresses this problem, whereas other GEL or GMC estimators in general do

not. Newey and Smith (2004) also analyze higher order MSE of bias-corrected GMM and GEL and

note that the bias-corrected empirical likelihood estimator is third-order efficient. A recent paper by

Kunitomo and Matsushita (2003) provides a detailed numerical study of EL and GMM, emphasizing

on cases where the number of moments q is large. They find that the distribution of the EL estimator

tends to be more centered and concentrated around the true parameter value compared with that of

GMM. They also report that the asymptotic normal approximation appears to be more appropriate

for EL than for GMM.
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In a related recent study, Newey and Windmeijer (2006) consider asymptotics of GEL and

GMM under “many weak moment conditions.” An interesting aspect of this asymptotic scheme

is that it captures an additional variance term in the asymptotic distribution of GEL due to the

randomness in the (implicitly) estimated Jacobian term D. They find that the two-step GMM is

asymptotically biased under this scheme, whereas GEL is not. They further propose an appropriate

variance estimator for GEL in this case.

5.2. Testing. One of the significant findings in the early literature of empirical likelihood is the

Bartlett correctability of the empirical likelihood ratio test, discovered by DiCiccio, Hall, and Romano

(1991). A well-known result for parametric likelihood shows that one can improve the accuracy of the

parametric likelihood ratio (LR) test by adjusting it by a constant called the Bartlett factor. DiCiccio,

Hall, and Romano (1991) prove that this result holds for empirical likelihood. They consider testing

a hypothesis of the form θ = θ0 in (2.2) when the model is just-identified, i.e. q = k. The relationship

(2.10) implies that the empirical likelihood ratio statistic r for the constraint and elr(θ0) are identical

for this case. Recall that the asymptotic distribution of elr(θ0) (see (2.9)) is chi-square with q degrees

of freedom, i.e. Pr{elr(θ0) ≤ x} → Pr{χ2
q ≤ x} for x ≥ 0 as n → ∞. It can be shown that the

accuracy of this approximation is of order n−1:

Pr{elr(θ0) ≤ x} = Pr{χ2
q ≤ x}+O(n−1).

The error rate n−1 is good but not surprising since it can be achieved by other conventional tests, such

as the Wald test. What is surprising about the Bartlett correctability result discovered by DiCiccio,

Hall, and Romano (1991) is that the ELR test, which is nonparametric, permits Bartlett correction

and it yields the same accuracy rate as in the parametric case. Let a denote the Bartlett factor, then

Pr{elr(θ0)(1 + n−1a) ≤ x} = Pr{χ2
q ≤ x}+O(n−2).

See DiCiccio, Hall, and Romano (1991) for an analytical expression of a. The Bartlett factor can be

replaced by an appropriate estimator without affecting the error rate n−2. Notice that no element of

the parameter vector θ is estimated in the testing problem considered by DiCiccio, Hall, and Romano

(1991). Showing Bartlett correctability of ELR for more complex testing problems is harder, though

some progress has been made. For example, Chen and Cui (2005) consider Bartlett correctability in

the case where the model is just identified (q = k), and one is interested in testing an s-dimensional

subvector of the parameter θ with s < k. See also Chen and Cui (2004). Though their result is stated in

terms of just identified models, the Chen-Cui theorem immediately implies the Bartlett correctability
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of the empirical likelihood-based overidentifying restrictions test statistic elr(θ̂EL), which is important

in econometric applications. Whang (2006) reports strongly supportive experimental evidence for

the Bartlett correction for quantile regression models. See also Chen, Leung, and Qin (2003) for

simulation results on Bartlett correction in an interesting application of EL. On the other hand, it

should be added that Corcoran, Davison, and Spady (1995) raise a question concerning the empirical

relevance of Bartlett correction. These issues deserve further investigation.

6. Some variations of EL

6.1. Estimation under Conditional Moment Restrictions. The moment condition model (2.2)

is standard, though it is sometimes useful to consider a model stated in terms of a conditional moment

restriction. Suppose, instead of (2.2), random variables x and z satisfies the condition

(6.1) E[g(z, θ)|x] = 0, θ ∈ Θ.

This is trivially satisfied for the standard mean regression model E[y|x] = m(x, θ) by setting g(z, θ) =

y − m(x, θ) and z = (x, y). It also holds for many models of dynamic optimization, where (6.1)

is interpreted as a stochastic Euler equation. The condition (6.1) implies (2.2), thus the former is

stronger than the latter. This feature often leads to a common practice where a researcher picks an

arbitrary matrix-valued function a(x) of x as a matrix of instruments, then applies GMM, EL or other

methods to an implication of (2.2):

E[a(x)g(z, θ)] = 0.

Such a procedure is used under the presumption that the chosen instrument a(x) identifies θ, which

is not necessarily true even if θ is identified in the original model (6.1); see Dominguez and Lobato

(2004) on this issue and other identification problems in the standard treatment of conditional moment

restriction models. Moreover, it fails to fully utilize the information contained in the conditional

moment restriction, and the resulting estimator does not achieve the semiparametric efficiency bound

in general. A more satisfactory approach is to directly impose (6.1) in estimating θ.

Let D(x) = E[∇θg(z, θ)] and V (x) = E[g(z, θ)g(z, θ)′|x]. Chamberlain (1987) shows that the

semiparametric efficiency bound for the model (6.1) is given by

(6.2) I−1 =
[
E[D(x)′V −1(x)D(x)]

]−1
,

which can be attained by setting a∗(x) = D′(x)V −1(x) as instruments. One way to achieve this bound

in practice is to apply a two step procedure. In the first step, one obtains an inefficient preliminary
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estimator θ̃ for θ, and the unknown functions D(x) and V (x) are estimated by running nonparametric

regressions of∇θg(z, θ̃) and g(z, θ̃)g′(z, θ̃) on x. The nonparametric estimates D̃(x) and Ṽ (x) evaluated

at xi, i = 1, .., n are used to construct estimated optimal instruments ã∗(xi), i = 1, ..., n. In the second

step, the optimal GMM is implemented using ã∗(xi), i = 1, ..., n as instruments. See Robinson (1987)

and Newey (1990) for details of this approach.

The two-step approach is asymptotically valid under relatively mild conditions, but it is impor-

tant to explore alternative approaches based on empirical likelihood for the following reasons. First,

the validity of the two-step approach relies on the availability of a preliminary consistent estimator

for θ. This can be in principle achieved by choosing an appropriate function a(x) that identifies θ, but

this is by no means guaranteed, as noted in the study by Dominguez and Lobato (2004) mentioned

above. Second, Dominguez and Lobato (2004) also find that even if the form of the optimal IV a∗ were

known, the resulting moment condition E[a∗(x)g(z, θ)] = 0 may fail to identify θ while the original

model (6.1) identifies it. Third, the theoretical analysis in previous sections on unconditional moment

condition models shows that GMC/GEL-type methods — empirical likelihood in particular — have

various advantages over two-step procedures.

The rest of this subsection discusses two distinct empirical likelihood-based approaches to con-

ditional moment restriction models, one proposed by Kitamura, Tripathi, and Ahn (2004) and the

other by Donald, Imbens, and Newey (2003). The first uses kernel smoothing or a similar nonpara-

metric regression technique to incorporate local restrictions implied by (6.1). The second employs

an expanding set of unconditional moment restrictions so that the conditional moment restriction is

“spanned” asymptotically. Both EL-based approaches address the two issues for the two-step approach

regarding identification due to the choice of instruments; see more discussions below.

The approach taken by Kitamura, Tripathi, and Ahn (2004) utilizes kernel regression to calcu-

late localized empirical log-likelihood, though other nonparametric regression techniques work for the

purpose as well. Let K and h be an appropriate kernel function and bandwidth, and define a version

of nonparametric log-likelihood localized at xi,

(6.3) `LNPi(pi1, ..., pin) =
n∑

j=1

wij log pij , wij =
K(xi−xj

h )∑n
j=1K(xi−xj

h )
, (pi1, ..., pin) ∈ ∆,

which is to be maximized subject to the conditional mean zero constraint for a given value of θ:

n∑
j=1

pijg(zj , θ) = 0.
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The idea of applying a nonparametric regression technique to likelihood is reminiscent of the expected

log likelihood criterion that justifies the local likelihood methodology (Hastie and Tibshirani (1986)).

The maximum value of the above optimization problem is used as the empirical log-likelihood contri-

bution of the i−th observation, and in what follows denoted by `i(θ). The duality result in Section 3

shows that

(6.4) `i(θ) = wij logwij − max
γi∈Rq

n∑
j=1

wij log(1 + λ′ig(zj , θ)).

The dual form formulation (6.4) is obviously preferred over the primal form formulation (6.3) from the

computational point of view. Define the log-likelihood function for θ ∈ Θ conditional on X = {xi}n
i=1

as

(6.5) `CEL(θ) =
n∑

i=1

`i(θ).

The maximizer of `CEL(θ) may be termed the conditional empirical likelihood estimator (or the

smoothed empirical likelihood estimator) for θ for obvious reasons,4 and will be denoted by θ̂CEL.

See also LeBlanc and Crowley (1995) and Zhang and Gijbels (2003) for similar estimators.

Kitamura, Tripathi, and Ahn (2004) show that the limiting distribution of the conditional

empirical likelihood estimator θ̂CEL is given by

√
n(θ̂CEL − θ) d→ N(0, I−1),

that is, it achieves the semiparametric efficiency bound defined by (6.2). Unlike a two stage procedure

where the choice of instruments in the first stage can affect identifiability, this estimator directly

exploits the identification power of (6.1). Even in the examples presented by Dominguez and Lobato

(2004) where the optimal IV a∗ fails to deliver identification, the conditional empirical likelihood

estimator is consistent as far as the original model (6.1) identifies θ. One may find this fact rather

paradoxical, though this is due to the global properties of the objective functions. The likelihood

nature of `CEL guarantees that its value is globally maximized at the true value asymptotically. In

contrast, the form of optimal IV is based on local efficiency considerations, therefore the objective

function of the corresponding GMM with optimal IV may fail to deliver identification. Also, the

estimator θ̂CEL avoids explicit estimation of the functions D(x) and V (x). This feature also applies

4Kitamura, Tripathi, and Ahn (2004) allow the support of x to be unbounded, and they use trimming to deal with

technical problems associated with it. The treatment in this section ignores this issue to simplify presentation. Kitamura,

Tripathi, and Ahn (2004) report that the use of trimming factors did not affect the result of their simulation experiments

qualitatively.
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to inference, i.e. testing and confidence interval calculation. To test a hypothesis of the form θ ∈

Θ0,dim(Θ0) = k − s, form a likelihood ratio statistic based on `CEL:

rCEL = −2
(

sup
θ∈Θ0

`CEL(θ)− sup
θ∈Θ

`CEL(θ)
)
.

This converges to a χ2
s random variable in distribution under the null hypothesis. The same result,

of course, can be used for constructing confidence intervals by inverting the likelihood ratio statistic.

Kitamura, Tripathi, and Ahn (2004) report some Monte Carlo results of this estimator and

existing two-step estimators. The conditional EL estimator θ̂CEL performs remarkably well, and

often works substantially better than the two step estimators in their simulations. For example, the

precision of the conditional EL estimator, in terms of various dispersion measures, is close to that

of the infeasible ideal estimator based on the unknown optimal IV even for a moderate sample size.

They also report that the likelihood-ratio test based on rCEL works well, in terms of its size. Other

asymptotically valid tests based on efficient and inefficient estimators tend to over-reject when the

null is correct, whereas rejection probabilities of the rCEL-based test are close to the nominal level in

their experiments. Kitamura, Tripathi, and Ahn (2004) note that the performance of their procedure

is insensitive to the choice of bandwidth, and the standard cross-validation seems appropriate for

selecting it automatically.

Smith (2003) extends the analysis of Kitamura, Tripathi, and Ahn (2004) by replacing the log-

likelihood criterion with a Cressie-Read type divergence (see Section 3 for discussion on the Cressie-

Read family of divergence). That is, he replaces (6.3) with

(6.6)
n∑

j=1

wij
2

α(α+ 1)

[(
pij

wij

)−α

− 1

]
.

His estimator therefore includes the conditional empirical likelihood estimator as a special case where

α is 0. This is analogous to the treatment of EL as a GMC presented in Section 3. Smith (2003)

shows that his estimator for θ is first-order equivalent to θ̂CEL. A related paper by Smith (2005) uses

the GEL formulation to analyze the problem. It replaces log(1 + y) in the dual form of log-likelihood

contributions (6.4) with a general concave function. The resulting estimator corresponds to the dual

formulation (3.16) of GMC, modified by kernel regression. It, therefore, further generalizes the Cressie-

Read type estimator in Smith (2003) mentioned above. This line of research has been also pursued

by Antoine, Bonnal, and Renault (2006). They study the conditional empirical likelihood procedure

of Kitamura, Tripathi, and Ahn (2004), but replace the likelihood criterion in (6.3) with a chi-square

distance. This corresponds to the criterion in (6.6) with α = −1, and can be interpreted as a localized
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version of Euclidean likelihood discussed in Section 3. As noted there, this choice of criterion for

GMC yields an explicit solution, which also applies to the localized version as well. This might lead

to a modest saving of computational costs. Gagliardini, Gourieroux, and Renault (2004) develop a

creative use of the Euclidean likelihood version of the conditional empirical likelihood procedure in

option pricing.

An alternative empirical likelihood-based approach to estimate (6.1) has been suggested by

Donald, Imbens, and Newey (2003). They use a series of functions of x to form a vector of instru-

ments, and let the dimension of the vector increase as the sample size goes to infinity. Let qK(x) be

such a vector, then the conditional moment restriction implies the unconditional moment restriction

E[g(z, θ) ⊗ qK(x)] = 0. Donald, Imbens, and Newey (2003) apply unconditional versions of empiri-

cal likelihood and GEL (hence GMC) to the implied unconditional moment condition model. Since

the optimal GMM with instruments {a∗(xi)}n
i=1 is asymptotically efficient, if the vector qK approx-

imates a∗ as K → ∞, the optimal GMM applied to g(z, θ) ⊗ qK would be asymptotically efficient

as well. A leading choice for qK is spline: the s-th order spline with knots t1, ..., tK−3−1 is given by

qK(x) = (1, x, ..., xs, [(x− t1 ∨ 0)]s, ..., [(x− tK−s−1) ∨ 0]s). This means, however, that the dimension

of the estimating function is high even for a moderate sample size. In view of the result by Newey

and Smith (2004) described in Section 5.1, the two-step GMM for θ is likely to suffer from severe bias

due to this high-dimensionality, whereas it is natural to expect empirical likelihood to perform well in

a situation where the dimension of moments grows with the sample size. Donald, Imbens, and Newey

(2003) develop asymptotic theory for the (generalized) empirical likelihood estimator for (6.1) under

this environment. They show that this procedure also achieves the semiparametric efficiency bound

I−1.

It is important to note that neither of the two EL-based procedures does not assume that the

econometrician has a priori knowledge about a finite dimensional instrument vector a that identifies

θ. Such knowledge is crucial for a two-step procedure discussed above. The treatment of the EL

estimator in Donald, Imbens, and Newey (2003) imposes restrictions on the distribution of x, such as

its density being bounded away from zero, and these are somewhat stronger that those assumed in

Kitamura, Tripathi, and Ahn (2004). The two are quite different algorithmically. Maximization of

the former is in some sense simpler than the latter, which requires calculation of local likelihood (6.4)

at each xi; on the other hand, the former involves construction of qK , including choosing the basis

functions and selection of the dimension of instruments K.
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6.2. Nonparametric specification testing. A large literature exists for nonparametric goodness-

of-fit testing for regression function. Let y ∈ R and x ∈ Rd be a pair of random elements, and

consider the regression function E[y|x] = m(x). Suppose one wishes to test a parametric specification

m(x) = m(x, θ), such as a linear specification m(x, θ) = x′θ, against nonparametric alternatives.

Many authors, including Eubank and Spiegelman (1990) and Härdle and Mammen (1993), consider

this problem. See Hart (1997) for a review. A conventional approach to this problem is to compare

predicted values from the parametric regression model and a nonparametric regression method in

terms of an L2-distance. The rest of this subsection discusses application of empirical likelihood to

this problem. As the standard empirical likelihood ratio test possesses many desirable properties (see

Sections 4 and 5), it is of interest to consider empirical likelihood-based nonparametric specification

testing. It turns out that certain EL-based tests have asymptotic optimality properties.

The regression specification testing problem described above is a special case of the following.

Consider an Rq−valued parametric function g(z, θ), θ ∈ Θ ∈ Rk, of random variable z as in previous

sections. Let x be a random variable such that under the null hypothesis

(6.7) E[g(z, θ)|x] = 0 a.s. for some θ ∈ Θ.

Letting z = (y, x) and g(z, θ) = y −m(x, θ), one obtains the regression specification hypothesis. The

null hypothesis (6.7) is the identification restriction used in the previous section. Testing it, therefore,

is equivalent to test the overidentifying restrictions in the model (6.1). This motivates the following

test proposed by Tripathi and Kitamura (2003). It can be regarded as a nonparametric version of the

likelihood ratio test.

Tripathi and Kitamura (2003) consider testing the conditional mean zero restriction over a

compact set S, that is, E[g(z, θ)|x] = 0, θ ∈ Θ for x ∈ S. This is a common formulation used in

the literature of nonparametric specification testing: see Aı̈t-Sahalia, Bickel, and Stoker (2001), for

example. With this in mind, define the conditional nonparametric log-likelihood function as a sum of

localized nonparametric log-likelihood functions in (6.3) weighted by t(x) = 1{x ∈ S}:

`CNP(p11, p12, ..., pnn) =
n∑

i=1

t(xi)`LNPi(pi1, ..., pin).

Let `rCEL signify the restricted maximum value of `CNP under the conditional moment constraints

(6.8)
n∑

j=1

pijg(zj , θ) = 0, i = 1, ..., n, θ ∈ Θ.
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Calculations similar to ones presented in the previous section show that5.

`rCEL =
n∑

i=1

t(xi)wij logwij + sup
θ∈Θ

n∑
i=1

t(xi) min
γi∈Rq

−
n∑

j=1

wij log(1 + λ′ig(zj , θ̂CEL)).

It is straightforward to see that the maximum of `CNP without the restrictions (6.8) is attained at

pij = wij , giving

`uCEL =
n∑

i=1

t(xi)
n∑

j=1

wij logwij .

The log likelihood ratio statistic is therefore

rC = −2(`rCEL − `uCEL)(6.9)

= 2 inf
θ∈Θ

n∑
i=1

t(xi) max
γi∈Rq

n∑
j=1

wij log(1 + λ′ig(zj , θ)).

It is not essential that the second line in the definition of rC is evaluated at θ that minimizes the

expression. Other
√
n-consistent estimators for θ work without affecting the asymptotics.

Tripathi and Kitamura (2003) derive the limiting distribution of rC under the null (6.7). Let S

be [0, 1]×d. This assumption is innocuous since it can be achieved by an appropriate transformation

of x. Let c1(K) =
∫
K(u)2du be the roughness of the kernel function K used in (6.3). Define also

c2(K) =
∫

[
∫
K(v)K(u− v)dv]2du. Tripathi and Kitamura (2003) show the following: under the null

hypothesis (6.7),

(6.10)
rC − h−dqc1(K)√

2h−dqc2(K)
d→ N(0, 1).

given that d ≤ 3. Studentization of rC for cases with d > 3 is possible, though more involved; see

Tripathi and Kitamura (2003) for a formula that is valid for a general s. In practice, it seems that

it is best to bootstrap rC to obtain a reliable critical value for the empirical likelihood-based test

(see simulation results in Tripathi and Kitamura (2003)), as critical values based on the first order

approximation tend to lead to under-rejection. This is a phenomenon commonly observed throughout

the literature of nonparametric specification testing; see, for example, Härdle and Mammen (1993).

The empirical likelihood test statistic rC has features that distinguish it from other known

procedures. To discuss these features of rC, consider a large class of nonparametric testing procedures

that includes standard tests such as Härdle and Mammen (1993) as a special case. For simplicity,

5Note that Tripathi and Kitamura (2003) uses a different normalization for pij ’s, though this difference does not

matter in implementing the test.
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suppose both x and g are scalar-valued. Consider a weighted L2-distance statistic based on kernel

regression:

Jn(a) = h
n∑

i=1

a(xi)
n∑

j=1

[wijg(zj , θn)]2, a : [0, 1] → R+,

∫
a(x)2dx = 1.

Note that the choice of the weighting function a is arbitrary. The statistic Jn can be standardized

using the conditional variance function σ2(x) = var(g(zj , θ0)|x):

jn(a) =
h−1/2[Jn(a)− c1(K)

∫
σadx]√

2c2(K)
∫
σ2a2dx

.

The standardized weighted L2-statistic jn(a) converges to a standard normal random variable in

distribution under the null hypothesis. Note that the use of the kernel method above is inconsequential;

other nonparametric methods yield results that are essentially the same.

The above asymptotic approximation result is valid under weak regularity conditions and can

be used for testing the null hypothesis (6.7). The statistic jn(a), however, lacks an invariance property

that rC possesses. Let b(x) be an arbitrary measurable function of x, and define g∗(z, θ) = b(x)g∗(z, θ).

Note that the null hypothesis (6.7) can be expressed in an alternative form E[g∗(z, θ)|x] = 0, θ ∈ Θ

for every b. There is no mathematical or economic reason to prefer one parameterization over the

other, since they are mathematically equivalent. Nevertheless, this reformulation affects the test since

it essentially changes its weighting factor a. This dependence of empirical outcomes of the test on

the formulation of the null hypothesis seems undesirable. In contrast, the empirical likelihood ratio

statistic rC is invariant with respect to the choice of b, since any change in b is absorbed into the

variables λi, i = 1, ..., n in the definition of rC in (6.9).

The empirical likelihood test based on rC has an additional advantage in terms of its asymptotic

power. Note that the tests based on rC or jn(a) have nontrivial power against alternatives in an

n−1/2h−1/4-neighborhood of the null when the dimension d of x is 1. To fix ideas, consider an

alternative given by a function δ:

E[g(z, θ0)|x] = n−1/2h−1/4δ(x), θ ∈ Θ.

Let fx be the density function of x, and define

µ(a, δ) =

∫ 1
0 δ

2afxdx√
2c2(K)

∫ 1
0 σ

2a2dx
.

The statistic jn(a) converges to N(M(a, δ), 1) asymptotically under the sequence of alternatives. Let

Φ denote the standard normal CDF, then if one chooses a critical value c for jn(a), the power function
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is given by

π(a, δ) = 1− Φ(c− µ(a, δ)).

Tripathi and Kitamura (2003) show that the above results for jn(a) hold for the empirical likelihood

ratio with a particular form of a:

aEL(x) =
1

σ(x)
∫ 1
0 σ

−2dx
.

Though the power function π(a, δ) can be maximized at a∗ = const.×δ2(x)fx(x)/σ2(x) for a given δ, it

depends on δ. Therefore such a procedure is infeasible in practice. One way to proceed is to integrate

δ out from the power function π(a, δ) using a measure over the space of δ and to attempt maximizing

the average power criterion. Wald (1943), facing a similar situation in a parametric multi-parameter

testing problem, suggested the following. Suppose a hypothesis on a finite dimensional parameter

takes the form θ = θ0 ∈ Rp. Let π(δ) denote the power function corresponding to a local alternative

of the form θa = θ0 + n−1/2δ. The average power function with weight Pδ is π =
∫
π(δ)dPδ. Wald

suggests using Pδ that is essentially the probability measure implied by the asymptotic distribution of

the MLE for θ0. Tripathi and Kitamura (2003) extend this principle to nonparametric specification

testing. They suggest using the distribution of a continuous random function δ̃(x) on s = [0, 1] that

mimics the distribution of the nonparametric conditional moment estimator

δ̂(x) =
∑n

i=1K(xi−x
h )g(xi, θ)∑n

j=1K(xj−x
h )

to weight π(a, δ). Let C([0, 1]) denote the set of continuous functions over S = [0, 1], then the random

function δ̃(x) is a C([0, 1])−valued random element. Let Pδ be the probability measure for the random

function δ̃(x). The average power function is:

π(a) =
∫

C[0,1]
π(a, δ̃)dPδ(δ̃).

Calculus of variation shows that π(a) is maximized at a = aEL (Tripathi and Kitamura (2003)). That

is, the empirical likelihood test is asymptotically optimal according to the average power criterion.

The methodology by Tripathi and Kitamura (2003) has been extended in various directions.

Chen, Härdle, and Li (2003) investigate a method that is similar to the empirical likelihood test above.

Their construction of empirical likelihood applies kernel regression to the function g, not likelihood.

This also provides an asymptotically valid procedure. However, since it uses nonparametric regression

of g on x, its finite sample behavior is not invariant with respect to multiplicative re-normalization

of g with a function of x. This is in contrast to the methodology by Tripathi and Kitamura (2003),

which has the invariance property since it smoothes the likelihood function rather than the moment



35

function. On the other hand, Chen, Härdle, and Li (2003) develop asymptotic theory of their test for

dependent processes. This extension is important, as they apply their method to test a defusion model

for asset returns. Smith (2003) extends the test statistic rC by replacing the log-likelihood criterion

with a Cressie-Read type divergence measure. Smith’s test, therefore, is also invariant against re-

normalization. It is natural to expect that his test possesses the average power optimality property

of the rC-based test.

There is a different empirical likelihood-approach for testing the conditional moment restriction

(6.7). The insight that multiplying g(z, θ) by a growing number of appropriate instruments asymp-

totically imposes the conditional moment restrictions, used by Donald, Imbens, and Newey (2003)

for obtaining an asymptotically efficient EL estimator, is valid here as well. Recall that the ELR

function (2.9) evaluated at θ̂EL serves as an appropriate test statistic for testing the overidentifying

restrictions for the unconditional moment restriction model (2.2) with a fixed number of moment

conditions. Testing (6.7) is asymptotically equivalent to testing a growing number of unconditional

overidentifying restrictions of the form E[g(z, θ)⊗ qK ] = 0 in the notation used in Section 6.1. It is,

therefore, natural to use the maximum value of the ELR function calculated for the moment function

g ⊗ qK as a test statistic. Donald, Imbens, and Newey (2003) show that the test statistic

supθ∈Θ elr(θ)− (qK − k)√
2(qK − k)

is distributed according to the standard normal distribution asymptotically under the null hypothesis

(6.7), which corresponds to the limiting distribution for rC obtained in (6.10).

6.3. Dependent Data.

6.3.1. The Problem. The foregoing sections explored empirical likelihood methods with independent

observations. This section points out various impacts of dependence on the results discussed so far

in the current paper, and presents empirical likelihood-based approaches that are suitable for time

series data. The introduction of dependence typically necessitates modification of the definition of

empirical likelihood. This should be clear from the form of the nonparametric log likelihood (2.1),

which is interpreted as the log-likelihood of independent multinomial data. Some of the standard

asymptotic properties of empirical likelihood no longer hold under dependence without appropriate

modifications. To see this point, suppose stationary and weakly dependent time series observations

{zt}T
t=1 are given. (See Kitamura (1997) for some discussions on the notion of weak dependence.)
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Consider an unconditional moment condition model as in Section 2:

(6.11) E[g(zt, θ0)] = 0, θ0 ∈ Θ.

The only difference from (2.2) is that zt is a dependent process in (6.11). Recall that the standard EL

estimator solves the FOC of the form (5.3). As D̂(θ̂EL) and Ŝ(θ̂EL) are weighted averages, they con-

verge to their population counterparts D = E[∇θg(zt, θ0)] and S = E[g(zt, θ0)g(zt, θ0)′] in probability.

Expanding (5.3) with respect to θ̂EL in ḡ around θ0 and solving for θ̂EL − θ0,

(6.12)
√
T (θ̂EL − θ0) = (D′S−1D)−1DS−1

√
T ḡ(θ0) + op(1), ḡ(θ0) = T−1

T∑
t=1

g(zt, θ0).

Under a mild mixing condition, such as the one used in Kitamura (1997), the term
√
T ḡ(θ0) follows

the central limit theorem:

√
T ḡ(θ0)

d→ N(0,Ω), Ω =
∞∑

j=−∞
E[g(zt, θ0)g(zt+j , θ0)′],

yielding

√
T (θ̂EL − θ0)

d→ N(0, (D′S−1D)−1D′ΩD(D′S−1D)−1).

What this means is that the EL estimator θ̂EL is asymptotically first-order equivalent to the GMM

estimator with a sub-optimal weighting matrix (=S−1), whereas Ω−1 should be used for optimal

weighting. The standard empirical likelihood therefore yields an estimator that is T 1/2− consistent

and obeys a normal law asymptotically, but it is less efficient than the optimally weighted GMM

estimator. This fact also affects EL-based inference. Suppose one is interested in testing the hypothesis

θ0 ∈ Θ0 ⊂ Θ. Arguments as above show that the ELR statistic defined in (2.8) is asymptotically

equivalent to the difference between the minimum values of the quadratic form T ḡ(θ)S−1ḡ(θ) with

and without the constraint θ ∈ Θ0. Since the quadratic form is not weighted by the appropriate

matrix Ω−1, the ELR statistic fails to converge to the desired chi-square random variable with the

degrees of freedom dim(Θ)− dim(Θ0).

There are some possible approaches to solve the above problems. The first uses a parametric

model, and the second avoids such parametric modeling. The third strikes a middle ground between

the two approaches. The fourth uses a spectral method, which has a limited range of applications

relative to the other methods.
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6.3.2. Parametric Approach. A rather obvious method to deal with dependence is to introduce a

parametric model to remove dependence in the data. For example, one may use a p−th order (vector)

autoregressive model for the purpose. Let L denote the backshift operator, i.e. Lxt = xt−1. Consider

a p−th order polynomial B(L; ξ) parameterized by a finite dimensional vector ξ ∈ Ξ ⊂ RJ . Suppose

operating B(L, ξ0) to g(xt, θ0) yields εt = B(L, ξ0)g(xt, θ0) which is a martingale difference sequence

(mds). Define z∗t = (zt, zt−1, ..., zt−p), t = p + 1, ..., T and θ∗ = (θ′, ξ′)′ ∈ Θ∗ = Θ × Ξ. Then

the function g∗(z∗t , θ
∗) = [B(L, ξ)g(zt, θ)]⊗ [1, g(zt−1, θ)′, ..., g(zt−p, θ)′]′ satisfies moment restrictions,

i.e. E[g∗(z∗t , θ
∗)] = 0 at θ∗ = θ∗0 = (θ′0, ξ

′
0)
′. If such θ∗ is unique, application of EL to g∗ is justified.

Moreover, the sequence {g∗(z∗t , θ∗0)}T
t=1 is also a mds by construction. An application of the martingale

difference CLT to ḡ∗(θ∗0) = T−1
∑T

t=p+1 g(z
∗
t , θ

∗
0) yields

√
T ḡ∗(θ0, ξ0)

d→ N(0, S∗), S∗ = E[g∗(z∗t , θ
∗
0)g

∗(z∗t , θ
∗
0)
′].

The standard empirical likelihood estimator in Section 2 applied to g∗ yields an appropriate estimator

θ̂∗EL, in the sense that

(6.13)
√
T (θ̂∗EL − θ∗0)

d→ N(0, (D∗′S∗−1D∗)−1), D∗ = E[∇θ∗g
∗(z∗t , θ

∗
0)].

This gives the joint limiting distribution for the empirical likelihood estimator for the parameter of

interest θ0 and the nuisance parameter ξ0. Suppose the B(L, ξ) is parameterized as an unrestricted

p−th order VAR, i.e.

B(L, ξ) = Iq −
p∑

j=1

ΞjL
j , ξ = (vecΞ′1, ..., vecΞ

′
p)
′

Write θ̂∗EL = (θ̂′EL, ξ̂
′
EL)′, then a calculation shows that the marginal limiting distribution for θ̂EL in

the joint distribution given in (6.13) is:

√
T (θ̂∗EL − θ0)

d→ N(0, (D′Ω−1D)−1).

Therefore θ̂∗EL achieves the same asymptotic efficiency as the optimally weighted GMM for (6.11). It

appears that the method described above to estimate the model (6.11) is new, though some researchers

considered procedures related to the above methodology. They focus on time series models such as

an AR model rather than a structural model (6.11), therefore g(zt, θ) = zt. They are concerned with

inference for the parameter ξ0 in B(L, ξ0). One can use a sieve method where the order p of the

polynomial B(L, ξ) goes to infinity as the sample size T grows (e.g. Bravo (2005b)).
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6.3.3. Nonparametric Approach. The above approach has some aspects that are not entirely satisfac-

tory, as it relies on the parametric filter B(L, ξ). This reduces the appeal of empirical likelihood as

a nonparametric procedure. It also involves joint estimation of the parameter of interest θ0 and the

nuisance parameters ξ0, which can be high-dimensional for a moderate or large p. Fortunately, it is

possible to treat dependence fully nonparametrically in empirical likelihood analysis without relying

on a time series model as used above. The idea is to use blocks of consecutive observations to re-

trieve information about dependence in data nonparametrically, therefore termed blockwise empirical

likelihood (BEL). This is the approach first proposed by Kitamura (1997) and Kitamura and Stutzer

(1997). There is interesting parallelism between the bootstrap and empirical likelihood as pointed

out, among others, by Hall and LaScala (1990), and this is no exception: BEL is closely related to

the blockwise bootstrap proposed by Hall (1985), Carlstein (1986) and Künsch (1989).

Implementation of blockwise empirical likelihood proceeds as follows. Again, consider (6.11)

where {zt}T
t=1 are weakly dependent. The first step is to form blocks of observations. The follow-

ing description specializes to the “fully overlapped blocking” scheme in the terminology of Kitamura

(1997), for the sake of simplicity. This is essentially equivalent to the “time-smoothing” method pro-

posed by Kitamura and Stutzer (1997). A general blocking scheme that includes overlapping blocking

and non-overlapping blocking as two extreme special cases is discussed in Kitamura (1997). The first

step is to form data blocks: the t−th block of observations is given by Bt = (zt, zt+1, ..., zt+M−1),

t = 1, ..., T −M + 1 for an integer M . Suppose M → ∞ and M = o(T 1/2) as T → ∞. The purpose

of blocking is to retain the dependence pattern of zt’s in each block Bt of length M . Since M grows

slowly as the sample size grows, it captures information about weak dependence in the data asymp-

totically in a fully nonparametric way. The second step is to calculate what Kitamura and Stutzer

(1997) call the t−th “smoothed moment function”:

ψ(Bt, θ) = M−1
M−1∑
s=1

g(zt+s, θ).

The third step is to apply the empirical likelihood procedure discussed in Section 2 with g(zi, θ), i =

1, ..., n with ψ(Bt, θ), t = 1, ..., T−M+1. Proceeding as before yields the blockwise empirical likelihood

function profiled at θ:

(6.14) `block(θ) = min
γ∈Rq

−
T−M+1∑

t=1

log(1 + γ′ψ(Bt, θ)))− (T −M + 1) log(T −M + 1).

This corresponds to (2.5). Let θ̂block denote the maximizer of `block over Θ; this is the blockwise

empirical likelihood estimator of Kitamura (1997). Kitamura (1997) shows that the BEL estimator
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has the following limiting distribution

(6.15)
√
T (θ̂block − θ0)

d→ N(0, (D′Ω−1D)−1).

The blockwise empirical likelihood incorporates information about dependence in the estimator. It

achieves the same asymptotic efficiency as an optimally weighted GMM in a fully nonparametric way,

but it avoids preliminary estimation of the optimal weighting matrix Ω−1. The latter fact means that

the BEL estimator shares some advantages with the standard EL estimator, such as its invariance

property with respect to re-normalization of the moment condition vector g.

It is easy to see how the “right” asymptotic distribution in (6.15) is achieved by BEL. BEL

replaces the original moment function g with ψ. An approximation similar to (6.12) holds after this

replacement, but the relationships E[∇θψ(zt, θ0)] = D and limM→∞E[Mψ(Bt, θ0)ψ(Bt, θ0)′] = Ω

imply that

√
T (θ̂block − θ0) = (D′Ω−1D)−1DΩ−1

√
T ψ̄(θ0) + op(1),(6.16)

ψ̄(θ0) = (T −M + 1)−1
T−M+1∑

t=1

ψ(Bt, θ0).

Noting that T 1/2ψ̄(θ0)
d→ N(0,Ω), (6.15) follows. This argument shows that BEL implicitly “esti-

mates” Ω = limM→∞E[Mψ(Bt, θ0)ψ(Bt, θ0)′] by its sample counterpart. The “correct” weighting

matrix Ω =
∑∞
−∞E[g(zt, θ0)g(zt, θ0)′] emerges in the approximation (6.16) from the probability limit

of a weighted average of Mψ(Bt, θ0)ψ(Bt, θ0)′, t = 1, ..., T −M + 1. Note that the normalized sample

variance of the form

Ω̂ = (T −M + 1)−1
T−M+1∑

t=1

Mψ(Bt, θ0)ψ(Bt, θ0)′.

corresponds to the Bartlett kernel estimator of the “long-run covariance matrix” as proposed by Newey

and West (1987) with lag length M − 1. This suggests that one may select M in BEL by using a lag-

selection rule developed in the literature of long-run covariance estimation (see, for example, Andrews

(1991) and Priestley (1981)). The above observation also implies that it is possible to use weights

other than the flat weighting by M−1 in calculating ψ above. Such alternative weights correspond to

other kernel estimators of long-run covariances, as pointed out by Kitamura and Stutzer (1997) and

Kitamura (1997). See Smith (2004) for a comprehensive account of this correspondence in the context

of GEL.

The blockwise empirical likelihood function `block also yields a likelihood ratio test statistic to

which standard asymptotic results apply. Suppose one is interested in testing a hypothesis θ0 ∈ Θ0
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with dim(Θ0) = k − s. Let

rblock = −2c−1
T ( sup

θ∈Θ0

`block(θ)− sup
θ∈Θ

`block(θ)), cT =
(T −M + 1)M

T
.

The factor cT is necessary to account for the fact that blocks are overlapping, in the following sense.

There are T − M + 1 blocks of observations and each data block Bt consists of M observations

zt, ..., zt−M+1, therefore seemingly (T −M + 1)M observations enter the likelihood function `block.

But the actual number of observation is T , thus cT measures how many times each observation gets

double-counted. The above likelihood ratio statistic with the correction term c−1
T converges to a chi-

squared random variable with s degrees of freedom in distribution under the null hypothesis. Similarly,

modify the definition of the ELR function in (2.9) to define

elrblock(θ) = −2c−1
T [`block(θ) + (T −M + 1) log(T −M + 1)].

It can be shown that elrblock(θ0)
d→ χ2

s, which can be used for a test that is analogous to the Anderson-

Rubin test. Likewise, the value of elrblock at the BEL estimator asymptotically obeys the χ2
q−k law;

therefore, it offers a test for the overidentifying restrictions of the moment condition model (6.11) for

time series data. Kitamura (1997) also extends the Bartlett correctability result by DiCiccio, Hall,

and Romano (1991) of elr(θ0) for iid data to elrblock(θ0) with weakly dependent data. Let a denote the

Bartlett factor (see Kitamura (1997) for its expression). The result obtained in the paper shows that

adjusting elrblock(θ0) by a improves the accuracy of the chi-square approximation for the distribution

of the test statistic from

Pr{elrblock(θ0) ≤ x} = Pr{χ2
q ≤ x}+O(T−2/3)

to

Pr{elrblock(θ0)(1 + T−1a) ≤ x} = Pr{χ2
q ≤ x}+O(T−5/6).

Kitamura (1997) also shows that the idea of using blocks of data to construct empirical likelihood can

be extended to inference for infinite dimensional parameters, such as the spectral density of zt.

The blockwise empirical likelihood method has been extended in various directions. Nordman,

Sibbertsen, and Lahiri (2006) make an interesting discovery by considering inference for the mean E[zt]

when the process zt exhibits the so-called long range dependence behavior. It is known in the literature

that blocking methods used in the bootstrap and subsampling tend to break down under long range

dependence. A long range dependent process can be characterized by how slow its autocovariance

function decays, or, alternatively by the behavior of its spectral density at the origin. Using the

latter formulation, suppose the spectral density fz(ω) of the process {zt}∞t=−∞ at frequency ω is of
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the same order as |ω|−2d, d ∈ (−1
2 ,

1
2). A non-zero value of d corresponds to long-range dependence.

The essence of the discovery of the Nordman, Sibbertsen, and Lahiri (2006) is that the blockwise

empirical likelihood function as defined by Kitamura (1997) can be modified suitably for long range

dependent cases. In particular, they show that the adjustment factor cT = (T−M+1)M
T used for the

weakly dependent case needs to be modified as follows:

cT,n = (T −M + 1)
(
M

T

)1−2d

.

The value of d is zero if zt is weakly dependent. In this case c0,T = cT and the factor reduces to the

one proposed by Kitamura (1997).

Kitamura and Stutzer (1997) apply a variant of the blocking scheme as above to develop an

exponential tilting estimator for weakly dependent processes. Indeed, a number of subsequent papers

that study various aspects of BEL have appeared. Smith (1997) notes that Kitamura and Stutzer’s

blocking method remains valid for the entire GEL family; hence the same is expected to hold for

the GMC family in Section 3 as well. Higher order properties of BEL and other blockwise versions

of GEL estimators, in the spirit of Newey and Smith (2004), are investigated by Anatolyev (2005).

Bravo (2005a) studies the application of the blocking-based method by Kitamura (1997) as well as the

blocking-after-prewhitening method by Kitamura (1996a) described in the next section to the saddle-

point exponential tilting estimator by Kitamura and Stutzer (1997). Likewise, Lin and Zhang (2001)

and Bravo (2002) replace empirical likelihood in (6.14) with Euclidean likelihood and the Cressie-Read

divergence, respectively, and confirm that the first order asymptotic results for estimation and testing

derived for BEL in Kitamura (1997) still hold.

You, Chen, and Zhou (2006) find a different application of BEL to what essentially is a random

effects model for longitudinal data. In their application a block is formed per individual, so the length

of each block is equal to the number of observations available for each individual. Therefore it does not

go to infinity in their asymptotics. This method is robust against heteroskedasticity and within-group

correlation. You, Chen, and Zhou (2006) report experimental results that indicate that BEL tends to

produce much shorter confidence intervals than others with comparable coverage probabilities, such as

those obtained based on normal approximations with robust standard errors. This fact is consistent

with the optimal power properties of the empirical likelihood ratio test as outlined in Sections 4.2

and 4.3. Zhang (2006) applies BEL to NA (negatively associated) time series (see Joag-Dev and

Proschan (1983) for a definition of an NA process) and proves its asymptotic validity. Allen, Gregory,

and Shimotsu (2005) propose a bootstrapping procedure based on BEL. The idea is to extend the
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EL-based bootstrap method by Brown and Newey (2002), which will be described in Section 8, to

dependence data using BEL.

6.3.4. A Middle Ground. The blocking approach avoids arbitrary specification of dynamics. There-

fore, the empirical likelihood function is obtained without imposing restrictions other than the model

restriction (6.11). When observations are highly persistent, however, in the sense that the autocor-

relation function decays slowly as the number of lags increases, it might take long blocks to capture

dependence in the data. This requires the data size to be large. If the data process under consider-

ation appears highly persistent and the size of the available data set is small, the blocking approach

might need a modification. One possibility is to merge the parametric and blocking approaches, bor-

rowing the idea of prewhitening from the literature of spectral density estimation. See Section 7.4.1 of

Priestley (1981) for the pre-whitening method and Andrews and Monahan (1992) for an application

in econometrics. The idea of prewhitening in the spectral analysis of highly persistent processes is

as follows. First, fit a lower order (vector) autoregressive model to the original series and use it as

a filter to reduce its dependence, so that the process is closer to white noise after filtering. This is

the prewhitening step. Second, apply a standard spectral method to estimate the spectrum of the

prewhitened process. Third, use the coefficients of the (V)AR model used in prewhitening to obtain

an estimate of the spectrum of the original process. This last step is called re-coloring.

Applications of prewhitening in empirical likelihood have been investigated by Kitamura (1996a).

Consider the model (6.11) once again, where zt is highly persistent. As before, apply a parametric

VAR model B(L, ξ) to filter the process {g(zt, θ)}T
t=1, though B(L, ξ) is not meant to be the true

model that generates the process g(zt, θ0). Therefore, the filtered process B(L, ξ)g(zt, θ) would ex-

hibit a certain degree of dependence for every value of θ∗ = (θ′, ξ′)′; in particular, it is not supposed to

be a mds. The purpose of the filter B(L, ξ) is to reduce the dependence in the process, not eliminating

it. A low order filter, even a first order model, may suffice for the purpose. Such a choice avoids the

problem of overparameterization, which can be a serious issue in the purely parametric approach of

Section 6.3.2. Now let z∗t = (zt, ..., zt−p) and apply the blocking technique described above to the

process g∗(z∗t , θ, ξ) = [B(L, ξ)g(zt, θ)]⊗ (1, g(zt−1, θ)′, ..., g(zt−p, θ)′)′ to deal with the dependence not

captured by the filter:

ψ∗(B∗t , θ, ξ) = M−1
M−1∑
s=1

g∗(z∗t+s, θ, ξ), B∗t = (z∗t , ..., z
∗
t+M−1), t = p+ 1, ..., T −M + 1.
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The blockwise empirical log-likelihood with prewhitening is

(6.17) `pwblock(θ) = sup
ξ∈Ξ

min
γ∈Rq+dim Ξ

−
T−M+1∑
t=p+1

log(1+γ′ψ∗(B∗t , θ, ξ)))−(T−M−p+1) log(T−M−p+1).

Let θ̂pwblock denote the maximizer of `pwblock(θ). The block length parameter M needs to go to infinity

such that M = o(T 1/2), as assumed for BEL. Since the filter B(L, ξ) is not a model, ξ̂pwblock would

converge to some “pseudo-true” value and therefore its asymptotic behavior is not of main interest.

Regarding the parameter of interest θ0, the following holds

√
T (θ̂pwblock − θ0)

d→ N(0, (D′Ω−1D)−1).

To carry out inference, replace `block(θ) with `pwblock(θ) in the definitions of rblock and elrblock(θ), θ ∈

Θ. The resulting prewhitened versions rpwblock and elrpwblock(θ), θ ∈ Θ have the same asymptotic

properties as their BEL counterparts without prewhitening. An interesting feature of this procedure

is that there is no need to apply recoloring explicitly, since it is done implicitly in the empirical

likelihood algorithm.

6.3.5. Frequency Domain Approach. Yet another approach to deal with dependence in the empirical

likelihood analysis is to apply frequency domain methods, as proposed by Monti (1997). This work

follows the Whittle likelihood methodology, therefore a parametric model for the spectral density (e.g.

the spectral density function implied by a parametric ARMA model) is considered. The method is

suitable for parametric time series models and differs from the block-based methodologies discussed

in Sections 6.3.3 and 6.3.4, where the goal is to treat dependence nonparametrically. Nordman and

Lahiri (2004) shows that the frequency domain empirical likelihood applies to a class of statistics

termed ratio statistics (see Dahlhaus and Janas (1996)), allowing possible long range dependence.

6.4. Further Applications of EL. An interesting aspect of empirical likelihood is that it allows the

researcher to combine information from two data sets in a natural manner. Chen, Leung, and Qin

(2003) discuss an application of empirical likelihood when a complete data set (validation set) and

a data set that includes covariates and surrogates (non-validation set) are available. They find that

their empirical likelihood based method yields highly accurate confidence intervals. Hellerstein and

Imbens (1999) discuss the use of empirical likelihood to estimate a regression model when information

on some moments is available from auxiliary data.

Wang and Rao (2002) develop a valid empirical likelihood ratio test in a missing data problem,

where nonparametric imputation is used under the missing at random (MAR) assumption. They
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also derive an empirical likelihood estimator that incorporates information in additional moment

conditions. Tripathi (2005) considers EL-based estimation of models with stratified data.

Empirical likelihood has been applied to the problem of weak instruments; see Caner (2003),

Guggenberger and Smith (2005) and Otsu (2006). These papers use empirical likelihood or GEL

mainly in an LM-test setting (which, if appropriately defined, is known to work for the weak IV

problem; see Kleibergen (2002)). This is a rather tricky problem for EL, because many distinctive

properties of empirical likelihood-based inference crucially depend on the structure of the empirical

likelihood ratio test statistic, and they do not generally carry over to LM-type tests.

7. Misspecification

It is well-known that OLS and parametric MLE yield results that can be regarded as best

approximations, where the criteria are mean square error (White (1980)) and the Kullback-Leibler

divergence (see Akaike (1973) and White (1982)), respectively. Such a best approximation result does

not carry over to the two-step GMM, since the probability limit of the two-step GMM depends on

the weighting matrices used in both steps in a complicated and uninterpretable way. A one-step

estimation with a sub-optimal weighting matrix may avoid this issue, but such an estimator loses

efficiency when the model is correctly specified.

Interestingly, the GMC estimator possesses an approximation property analogous to that of

MLE. To illustrate this point, it is useful to summarize basic results from the theory of parametric

ML. Suppose {zi}n
i=1 ∼iid µ. The econometrician uses a finite dimensional vector ξ ∈ Ξ for parame-

terization, so the model is given by Ppar = {Pξ|ξ ∈ Ξ}. The model Ppar is misspecified if it does not

contain µ. MLE then converges to ξ∗ such that Pξ∗ = argminP∈Ppar
K(P, µ). That is, MLE finds the

probability measure that is closest to the true distribution µ in terms of the KL divergence.

Now, consider the moment condition model (2.2). This means that the statistical model is

given by P defined in (3.2), instead of Ppar above. Suppose P is misspecified. A useful fact is that

a GMC estimator finds the best approximation for the true measure µ, where the approximation

criterion is given by the contrast function (3.1). For example, Kitamura (1998) studies the asymptotic

behavior of the exponential tilt saddle-point estimator (3.14). The main results are as follows. θ̂ that

solves (3.14) and ̂̄P (θ̂)(A) in (3.15) converge to values θ∗ and P ∗ = P̄ (θ∗), where

K(P ∗, µ) = inf
p∈P

K(P, µ).
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That is, the values θ∗ and P ∗ correspond to the solution of the approximation problem infP∈P K(P, µ).

The exponential tilt estimator and the corresponding probability measure estimator are sample analog

of (θ∗, P̄ (θ∗)). Imbens (1997) makes a related observation that the empirical likelihood estimator

minimizes the Kullback-Leibler divergence between the empirical distribution and the probability

distribution under the moment constraint; see also Chen, Hong, and Shum (2001). These results are

expected to extend to other members of GMC.

Recall that some GEL estimators can be interpreted as dual GMC estimators when ρ in (3.17) is

the convex conjugate of a Cressie-Read divergence. It is therefore obvious that the best approximation

result holds for the corresponding subset of the GEL family. In general, however, GEL estimators may

not be represented as GMC. For this reason some GEL’s do not seem to provide best approximation

interpretations presented here.

Kitamura (1998) also derives the asymptotic distribution of the exponential tilting estimator

under misspecification and extends Vuong’s model comparison test (Vuong (1989)). Vuong’s original

test is concerned with likelihood-ratio testing between two non-nested parametric models. His model

comparison measure for two parametric models Ppar and Qpar is

(7.1) δ = inf
P∈Ppar

K(µ, P )− inf
Q∈Qpar

K(µ,Q).

Vuong (1989) shows that a normalized likelihood ratio statistic (= LR) converges to δ in probability.

This can be used to test the null hypothesis δ = 0, since
√
nLR/sδ, where sδ is an appropriate

studentization factor, converges to the standard normal distribution.

Kitamura (1998) shows that this idea works for moment condition models. The motivation

of the paper comes from the notion that many economic models are best viewed as approximations.

Even though moment condition models are considered to be more robust than parametric models,

they still often come from highly stylized economic models. The researcher needs to confront the issue

of misspecification in such a situation. For example, a leading example of applications of moment

condition models is the classic study of asset pricing models by Hansen and Singleton (1982). If one

subjects such a model to specification tests, oftentimes negative results emerge, implying potential

misspecification of the model. Moreover, there are many other non-nested moment conditions implied

by different asset pricing models, such as cash-in-advance models. It is then of interest to compare

two potentially misspecified competing moment condition models.

Consider two moment condition conditions that are non-nested, and possibly misspecified:

E[g1(z, θ1)] = 0, θ1 ∈ Θ1 and E[g2(z, θ2)] = 0, θ2 ∈ Θ2.
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From these conditions define two sets of probability measures as in (3.2). Call them P1 and P2.

Suppose the researcher decides to use a contrast function of the form (3.1) to measure the divergence

between the true probability measure and the probability measures implied by the model. Discussions

in Section 3.1 imply that different choices of φ generate a wide variety of criteria. Once a criterion is

chosen, define

δ = inf
P1∈P1

D(P1‖µ)− inf
P2∈P2

D(P2‖µ)

= inf
θ1∈Θ1

v1(θ1)− inf
θ2∈Θ2

v2(θ2)

where θ1 ∈ Θ1 and θ2 ∈ Θ2 are the unknown parameters in the two moment condition models, and

v1 and v2 are the corresponding value functions (see Equation (P) in Section 3). δ = 0 means that

Models P1 and P2 are equally good approximations of the true probability measure µ in terms of the

researcher’s criterion function. Likewise, a positive (negative) δ implies that P2 (P1) fits to the true

data distribution better than P1 (P2) does. Using the sample dual form (3.9), define:

δ̂ = inf
θ1∈Θ1

max
λ1∈R,γ1∈Rq

[
λ1 −

1
n

n∑
i=1

φ?(λ1 + γ′1g1(zi, θ1))

]
(7.2)

− inf
θ2∈Θ2

max
λ2∈R,γ2∈Rq

[
λ2 −

1
n

n∑
i=1

φ?(λ2 + γ′2g2(zi, θ2))

]
.

Kitamura (1998) considers the asymptotic distribution of δ̂ for the case where the contrast function is

given by the Kullback-Leibler divergenceK(·, µ), therefore the resulting estimators are the exponential

tilt estimators (3.14). As in Vuong’s test, with an appropriate scaling factor sδ > 0, the asymptotic

distribution of the statistic under the null hypothesis δ = 0 is standard normal:

n1/2δ̂

sδ

d→ N(0, 1).

Kitamura (1998) also discusses how to estimate sδ. See Christoffersen, Hahn, and Inoue (2001) for an

application of this model comparison test to value-at-risk modeling.

Chen, Hong, and Shum (2001) note that such an idea can be also used to carry out model

comparison between a parametric specification and a semiparametric one. In their case, P1 comes

from a parametric model: the researcher parameterizes the distribution of data z as Pξ, ξ ∈ Ξ, so

P1 = {Pξ|ξ ∈ Ξ}. This model is compared against a moment condition model, which generates P2.

Chen, Hong, and Shum (2001) use D(P, µ) =
∫

log dµ
dP dµ as the contrast function.

Kitamura (2002) also explores the issue of model comparison tests, focusing on the case where

there exist covariates. The paper considers estimation of conditional moment restriction models
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of the form E[g(z, θ)|x] = 0. For example, suppose one considers modeling the conditional mean

of a variable y given x using a parametric function, e.g. E[y|x] = β′x. Alternatively, a median

regression med(y|x) = β′x can be used. These models are non-nested, therefore conventional testing

methods do not work for testing one against the other. Note also that the presence of covariates is

crucial in these models. A typical choice of instrumental variables for these models is x, but moment

conditions such as E[x(y − β′x)] = 0 impose a just-identifying restriction so that the corresponding

set of measures P always include µ. GMC-based testing methods discussed above therefore do not

work, since infP∈P D(P, µ) = 0 no matter how badly the regression function is specified. It is of

course possible to add more instruments to obtain over-identifying restrictions, but such a method

involves an ad hoc choice of instruments. A solution to this problem by Kitamura (2002) is to

impose the conditional moment restriction directly and apply GMC by following the methodology in

Kitamura, Tripathi, and Ahn (2001) described in Section 6. Kitamura (2002) also develops asymptotic

theory for misspecified quantile regression models. This is a topic that has attracted attention in the

recent literature (see Kim and White (2002) and Angrist, Chernozhukov, and Fernandez (2005)). For

example, Angrist, Chernozhukov, and Fernandez (2005) investigate the asymptotic behavior of the

linear quantile regression estimator of Koenker and Bassett (1978). In contrast, Kitamura (2002)

considers the asymptotics of the estimator in Kitamura, Tripathi, and Ahn (2001) and provides a

best approximation characterization. The method in Kitamura (2002) is also useful in evaluating and

comparing a parametric model with covariates with mean/quantile regression models.

The consideration on misspecification also raises an interesting issue about robustness. If

one accepts the view that the econometric model under consideration (e.g. the moment condition

model (2.2)) is a reasonable yet misspecified approximation of the unknown true structure, it may

be desirable to use an estimator that is robust to misspecification. Roughly speaking, there are two

issues involved in assessing the robustness of an estimator. One is about the bias of the estimator

due to the misspecification, i.e. how the limit θ∗ of a GMC θ̂ behaves as the model P moves away

from the true probability measure µ. The other is the dispersion behavior of the estimator, such as

its asymptotic variance. (Some claims on this issue can be found in Schennach (2004).) As far as

one considers a global misspecification (as opposed to a local misspecification, in which the model

approaches the true probability measure at a certain rate), the former is typically dominant of the

two, which makes the latter a second order issue. An alternative approach to the robustness issue

is to consider the effect of local misspecification within a shrinking topological neighborhood of the

true probability distribution, so that both bias and variance matter asymptotically. Such analysis,



48 KITAMURA

put loosely, enables the researcher to compare robustness in terms of MSE. This approach appears to

be useful if one is interested in analyzing the robustness of empirical likelihood and other methods.

Note that this line of research has been carried out in the robustness literature on parametric models.

Some researchers in this literature argue for the use of minimum Hellinger distance methods. This

is interesting because the GEL/GMC families include the Hellinger distance as a special case, since

it is the Cressie-Read divergence with α = −1
2 . Detailed investigation toward a robustness theory of

empirical likelihood is left for a separate paper.

8. Computational issues and numerical examples

Empirical likelihood or its generalizations have desirable theoretical properties, as described in

the foregoing sections. This section turns to practical matters. First, issues associated with actual

implementation are explored. Some numerical algorithms are discussed. Second, numerical examples

of some of the methods discussed in the preceding sections are presented.

8.1. Implementing Empirical Likelihood. Computational issues for empirical likelihood are best

described by considering the unconditional moment restrictions model (2.2). It appears that the most

stable way to compute the EL estimator θ̂EL is to utilize the profile likelihood at θ as given by (2.5)

and write a nested optimization routine. See Chapter 12 in Owen (2001) for this and other types

of algorithms. The nested optimization method requires a routine for the inner loop minimization,

which takes θ as an argument and return the value

(8.1) min
γ∈Rq

Qn(θ, γ), Qn(θ, γ) = −
n∑

i=1

log(1 + γ′g(zi, θ)).

This is equal to the profile likelihood function `(θ) in (2.5), up to a constant which is irrelevant in

estimating θ. Once this routine is defined, it is maximized with respect to θ. This part can be called

the outer loop maximization. To compute θ̂EL, one uses a nested optimization algorithm where the

outer maximization loop encloses the inner minimization loop. Some comments on the inner loop and

the outer loop are in order. In particular, the problem associated with the situation where the convex

hull spanned by g(zi, θ), i = 1, .., n does not include the origin deserves a special attention.

The objective function Qn in the inner loop is convex in γ. Moreover, the analytical expressions

for its Jacobian and Hessian are readily available:

∇γQn(θ, γ) = −
n∑

i=1

g(zi, θ)
1 + γ′g(zi, θ)

,∇γγQn(θ, γ) =
n∑

i=1

g(zi, θ)g(zi, θ)′

(1 + γ′g(zi, θ))2
.
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It is therefore reasonable to carry out Newton iterations using these expressions. Hansen (2006)

suggests a rule for the choice of Newton step lengths. Even though the Hessian is positive definite

by its definition, sometimes inverting it numerically is difficult when the model is not well-behaved,

in particular for a value of θ that is distant from the optimal point θ̂EL. In such a situation one

may consider replacing it according to a quasi-Newton method or further modifying it along the line

suggested by Shanno (1970). Alternatively, one can use a nonlinear numerical optimization routine

based on numerical derivatives to minimize Qn with respect to γ.

Sometimes it may be advantageous to transform the parameter space of γ using (an approxi-

mation for) the Hessian matrix, as often done in a nonlinear numerical optimization algorithm. For

the inner loop problem above, this can be achieved by premultiplying g(zi, θ) with an appropriate ma-

trix, such as the inverse of the Cholesky decomposition of
∑n

i=1 g(zi, θ)g(zi, θ)
′, which is suggested by

Bruce Hansen in his GAUSS code for EL. This does not change the value function minγ∈Rq Qn(θ, γ),

but the definition of γ changes to γ∗ = [
∑n

i=1 g(zi, θ)g(zi, θ)
′]1/2′γ. The coordinate change is likely to

make the Hessian ∇γ∗γ∗Q close to the q dimensional identity matrix, and it may help the convergence

of the optimization process when the dimension q is high.

The inner loop optimization is generally a well-behaved convex programming problem, when

there is a solution. In some situations, however, it does not have a solution. This should be clear from

the primal problem (2.3). If for a given θ the condition

(C) 0 ∈ co{g(z1, θ), ..., g(zn, θ)}

fails to hold, that is, the convex hull of the n vectors of the moment function evaluated at the

observations {zi}n
i=1 does not include the origin of Rq, the problem (2.3) does not have a feasible

solution. Note that this is more of a practical problem than a theoretical one. If (C) fails, it is

theoretically appropriate to set the value of the empirical likelihood `(θ) at −∞ as a convention.

After all, a failure of (C) at a value of θ should be regarded as strong evidence against the possibility

that it is the true value. As far as E[g(z, θ0)] = 0, which holds if the model is correctly specified, the

condition (C) holds with probability approaching one at θ = θ0.

In practice, however, (C) can fail in finite samples even if the model is correctly specified,

partly because a numerical search in the outer maximization loop can take θ to areas that are far

from the true value θ0. Also, the vectors {g(zi, θ)}n
i=1 are more likely to fail to span the origin, if the

dimension of the space becomes higher or the number of the vectors becomes smaller. In other words,

the condition (C) may occasionally fail for a large q and/or a small n. Finally, when the model is



50 KITAMURA

misspecified as discussed in Section 7, this becomes an important issue. One needs to proceed with

caution when it happens.

Consider again the inner loop minimization problem (8.1), and suppose one starts a Newton

algorithm from a initial value (e.g. γ = 0). If (C) fails, a Newton iteration would make γ grow (in

absolute value). Theoretically, γ that “solves” the inner loop minimization (8.1) should be at infinity

in a direction where γ′g(zi, θ) is positive for all i.6 This makes the value of Qn negative infinity,

which is consistent with the convention introduced above. It is, however, likely to cause a problem

when implementing a numerical algorithm such as Newton’s method. For example, the first-order

gradient can still be large at the end of the algorithm if the maximum number of iterations is set

too low. More importantly, when the elements of γ are large in absolute value, it is likely that some

of the logs in Qn would have negative arguments at a γ value the (Newton) algorithm “tries.” This

causes a naive algorithm to stop. It is the author’s impression that a common mistake is to use a

rather arbitrary value such as zero to impute the value of minγ∈Rq Qn(θ, γ) when an algorithm halts

for this situation. Recall that theoretically the value of empirical log-likelihood should be negative

infinity in the event of the failure of (C), so using inappropriate values for this situation leads to quite

misleading results. This might explain some puzzling results of Monte Carlo experiments reported in

the literature. This is especially relevant when the power of ELR or the behavior of the EL estimator

under misspecification are being evaluated by simulations, since obviously the failure of (C) is an

issue in these situations. It can be in principle prevented by assigning an appropriate value when

this happens, but this should be done with caution as well, so that the numerical search in the outer

maximization loop over θ would not remain trapped in the region where the violation of (C) occurs.

A practical approach to deal with the above problem is to modify the algorithm to prevent

the problem associated with potential negative values in log terms of Qn. One possibility is to use

a constrained optimization routine to optimize Qn while keeping the arguments of the log terms

positive. That is, the objective function Qn(θ, γ) for a given value of θ is minimized over the region

{γ ∈ Rq : 1 + γ′g(zi, θ) ≥ δ for all i} in the inner loop, where δ is a small number chosen by the

econometrician. The resulting minimum values of Qn is then maximized over θ in the outer loop.

This method appears to work reasonably well in practice, even in a situation where the problem

associated with the violation of (C) is rather severe. Another potential solution, suggested by Owen

(2001), is to replace log in Qn by a function that allows negative arguments. He suggests choosing a

6The separating hyperplane theorem shows that such a direction exists if the condition (C) is violated.
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small number δ > 0 and use

log?(y) =

log(y) if y > δ

log(y)− 1.5 + 2y
δ −

z2

2δ2 if y ≤ δ,

which is twice continuously differentiable and concave. This makes the objective function

Q?n(θ, γ) = −
n∑

i=1

log?(1 + γ′g(zi, θ))

well-defined for all γ ∈ Rq.

Once the empirical likelihood function is calculated, it can be used for inference as seen in

the preceding sections. Standard empirical likelihood ratio statistics possess χ2 limiting distributions

and therefore provide methods for asymptotically valid inference. Moreover, under regularity condi-

tions, the second order derivative of the empirical log likelihood function `(θ) normalized by − 1
n and

evaluated at θ̂EL converges to the appropriate asymptotic variance matrix of θ̂EL, i.e.

− 1
n
∇θθ`(θ̂EL)

p→ (D′SD)−1,

This can be used to obtain asymptotic standard error estimates, though the optimal power results

(e.g. the generalized Neyman-Pearson property described in Section 4) strongly indicate that the

empirical likelihood ratio test has theoretical advantages over other methods, including a Wald-type

test or an LM-type test based on the asymptotic covariance matrix estimate − 1
n∇θθ`(θ̂EL). The same

optimality results also imply that it is best to invert the likelihood ratio test statistic to obtain a

confidence interval if it is computationally feasible. Many simulation studies report that empirical

likelihood ratio based confidence intervals tend to be substantially shorter than other asymptotically

valid intervals with comparable coverage probabilities.

In terms of size, however, the asymptotic chi-square approximation of the empirical likelihood

ratio statistic may not be accurate enough when the sample size is small. One potential way to

correct this is to use Bartlett adjustment discussed in Section 5.2. Analytical expressions for Bartlett

factors tend to be complicated even for a relatively simple model, and are probably hard to derive

for a complex structural model often used in econometrics. An alternative way to improve the size

properties of empirical likelihood ratio tests is to apply the bootstrap, sometimes called the bootstrap

calibration in the literature. Consider again the problem of testing the hypothesis R(θ0) = 0 discussed

in Section 2, where the empirical likelihood ratio statistic r has been introduced. The nonparametric

bootstrap can be implemented as follows. Resample {zi}n
i=1 according to the empirical measure µn



52 KITAMURA

with replacements in the usual manner to obtain bootstrapped data {z∗(b)i }n
i=1, b = 1, ..., B, where B

is the number of bootstrap replications. Define

`∗(b)(θ) = min
γ∈Rq

−
n∑

i=1

log(1 + γ′g(z∗(b)i , θ))− n log n, b = 1, ..., B.

The b−th bootstrap version of the empirical likelihood ratio statistic is

r∗(b) = −2

(
sup

θ∈Θ:R(θ)=R(θ̂EL)

`∗(b)(θ)− sup
θ∈Θ

`∗(b)(θ)

)
, b = 1, ..., B.

Alternatively, one may resample according to an EL-based estimate of the probability measure, bor-

rowing the idea of “efficient bootstrapping” by Brown and Newey (2002). To apply their method to

the current problem, define the constrained EL estimator θ̂c
EL = argmaxθ∈Θ:R(θ)=0 `(θ) and calculate

the NPMLE weights as in (2.6) under the constraint R(θ) = 0:

p̂c
ELi =

1

n(1 + γ̂(θ̂c
EL)′g(zi, θ̂c

EL)
, i = 1, ..., n.

One would then resample {zi}n
i=1 according to the probability measure µ̂c =

∑n
i=1 p̂

c
ELiδzi to generate

{z∗(b)i }n
i=1, b = 1, ..., B, from which bootstrap empirical likelihood ratio statistics are obtained:

r∗(b) = −2

(
sup

θ∈Θ:R(θ)=0
`∗(b)(θ)− sup

θ∈Θ
`∗(b)(θ)

)
, b = 1, ..., B.

The (1 − α)−quantile of the distribution of {r∗(b)}B
b=1 can be then used as a bootstrap 100(1 − α)%

critical value for r.

It is also possible to bootstrap the empirical likelihood ratio test statistic elr(θ̂EL) for overiden-

tifying restrictions in similar ways. One way is to use the empirical distribution µn for resampling to

generate {z∗(b)i }n
i=1, b = 1, ..., B, then replace {{g(z∗(b)i , θ)}n

i=1}B
b=1 by

g̃(z∗(b)i , θ) = g(z∗(b)i , θ)− 1
n

n∑
i=1

g(zi, θ̂EL), i = 1, ..., n, b = 1, ..., B.

This replacement is introduced to deal with the issue associated with bootstrapping under overiden-

tifying restrictions (see, for example, Hall and Horowitz (1996)). Now compute

elr∗(b)(θ) = max
γ∈Rq

2
n∑

i=1

log(1 + γ′g̃(z∗(b)i , θ)), b = 1, ..., B.

Evaluate each elr∗(b)(θ) at its maximizer θ̂∗(b) to obtain elr∗(b)(θ̂∗(b)EL ). The bootstrap empirical dis-

tribution of these values yields critical values for elr(θ̂EL). If, however, one uses µ̂EL =
∑n

=1 p̂ELδzi

derived in Section 2 for resampling as in Brown and Newey (2002), the recentering step is unnecessary.
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The above discussions focused on the bootstrap calibration in which the researcher uses the

distribution of bootstrap versions of empirical likelihood ratio statistics in place of the appropriate

chi-square distribution. There is another potentially interesting way to use bootstrap test statistic

values to improve accuracy of inference. Recall that empirical likelihood ratio statistics are generally

Bartlett-correctable (Section 5.2). The essence of Bartlett correction is to adjust a likelihood ratio

statistic (parametric or empirical) by its expected value. Suppose, for example, one wishes to compare

elr(θ̂EL) with its limiting distribution χ2
q−k. Then E[elr(θ̂EL)] = (q − k)(1 + n−1a) + O(n−2) for the

Bartlett factor a, and the Bartlett-corrected statistic is elr(θ̂EL)/(1 +n−1a). The factor a needs to be

estimated, but its expression can be overwhelmingly complex. One can, however, estimate the factor

in the denominator by taking the average of bootstrapped statistics generated by either of the two

algorithms described above. This yields a Bartlett-corrected empirical likelihood ratio statistic via

bootstrapping:
(q − k)elr(θ̂EL)

1
B

∑B
b=1 elr∗(b)(θ̂∗(b)EL )

The distribution of the above statistic can be approximated by the χ2
q−k distribution up to errors of

order O(n−2).

Bootstrap Bartlett correction has been used in parametric likelihood ratio testing. In particular,

Rocke (1989) considers the parametric LR test in a seemingly unrelated regression model and finds

that bootstrap Bartlett correction achieves accuracy comparable to conventional bootstrap methods

with a substantially smaller number of bootstrap replications. See also Zaman (1996) on the topic.

It is therefore worthwhile to consider the use of bootstrap Bartlett correction for empirical likelihood

in complex models where bootstrapping is costly. Chen, Leung, and Qin (2003) report a striking

performance of the bootstrap Bartlett correction for their empirical likelihood ratio test with validation

data.

8.2. Simulation Results. The theoretical analysis in Sections 4 and 5 indicates that empirical

likelihood-based methods possess theoretical advantages over other competing methods. The fol-

lowing numerical examples provide some insights on finite sample properties of these estimators.

8.2.1. Experiment 1. The first simulation design is taken from Blundell and Bond (1998) and Bond,

Bowsher, and Windmeijer (2001). The focus of this experiment is the relative finite sample perfor-

mance of EL-based estimators and the conventional GMM.7 It is concerned with a dynamic panel

7Further details of this experiment are to be found in Kitamura and Otsu (2005).



54 KITAMURA

data model: yit = θ0yt−1 + ηi + uit, i = 2, ..., n, t = 1, ..., T where ηi ∼iid N(0, 1), uit ∼iid N(0, 1),

and ei ∼iid N(0, 1
1−θ2

0
), and these shocks are independent. The initial value is drawn according to

yi1 = ηi

1−θ0
+ ei. The two equations, together with the independence assumptions, imply that

(8.2) E[yi,s(∆yit − θ0∆yit−1)] = 0, t = 1, ..., T, s = 1, ..., t− 2

and

(8.3) E[∆yit−1(yit − θ0yit−1)] = 0, t = 3, ..., T.

The task is to estimate the parameter θ0 using the moment conditions (8.2) and (8.3). The following

estimators are considered: (i) the 2-step GMM with its weighting matrix obtained by the usual robust

estimator as described in Blundell and Bond (1998) (θ̂GMM), (ii) the continuous updating GMM by

Hansen, Heaton, and Yaron (1996) (θ̂CUE), (iii) the maximum empirical likelihood estimator (θ̂EL), and

(iv) and the minimax estimator by Kitamura and Otsu (2005) (θ̂ld) with c = 0.1 and 0.2. The second

design is based on Bond, Bowsher, and Windmeijer (2001), where uit is replaced by a conditionally

heteroskedastic process of the form uit|yit−1 ∼ N(0, 0.4 + 0.3y2
it−1). The initial condition is generated

using fifty pre-sample draws as in Bond, Bowsher, and Windmeijer (2001). The third design is the

same as the first, except that uit is the (standardized) chi-square distribution with one degree of

freedom: uit ∼iid (χ2
1 − 1)/

√
2. Experimenting with asymmetric errors such as this specification is

important, since one of the main advantages of GMM, EL or other moment-based estimators is its

robustness against distributional assumptions. Also, asymmetric shocks appear to be an important

characteristic of empirical models of income dynamics (see Geweke and Keane (2000) and Hirano

(2002)), which is one of the main applications of dynamic panel data models. For these three designs,

the true value for the autoregressive parameter θ is set at 0.9. The fourth is the same as the first,

except that the AR parameter θ is set at 0.4. The panel dimensions are n = 100 and T = 6, and the

number of Monte Carlo replications is 1000 for each design. The first and second panels of Table 1

(Table 2) display results from the first and second (the third and the fourth) designs, respectively. The

five columns of each panel correspond to bias, root mean square errors (RMSE), mean absolute errors

(MAE) and the probabilities of the estimators deviating from the true value by more than d = 0.1

and 0.2, respectively.

The results of the experiment are intriguing, and in accordance with the theoretical results

presented in Sections 4 and 5. Some caution needs to be exercised in interpreting figures such as
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RMSE, as the existence of moments of these estimators can be an issue; see, e.g. Kunitomo and

Matsushita (2003).

In the first design with homoskedastic and normal idiosyncratic shocks, all of the estimators

work reasonably well, though the minimax estimation method by Kitamura and Otsu (2005) leads

to substantial efficiency gain in terms of MAE. Also, the deviation probabilities for d = .1 are much

lower for the minimax estimators than for CUE and EL. While the performance of (two-step) GMM

is only slightly worse than that of the minimax estimators in this design, that changes dramatically

in the second design, where conditional heteroskedasticity is introduced. Even though the bias of the

minimax estimators is slightly inflated relative to that of EL, it is offset by their variance reduction.

This is consistent with our interpretation that the minimax method “robustifies” the original EL

estimator. Deviation probabilities for this design exhibit an interesting pattern. Take the case with

d = 0.2. GMM falls outside of the interval 0.8± 0.2 with 61 percent probability. CUE is much better

Table 1. Estimation of Dynamic Panel Data Model (1)

homoskedastic uit heteroskedastic uit

bias RMSE MAE Pr{|θn − θ0| > d} bias RMSE MAE Pr{|θn − θ0| > d}

d = .1 d = .2 d = .1 d = .2

θ̂GMM .014 .096 .071 .296 .029 -.253 .364 .261 .815 .614

θ̂CUE .001 .113 .084 .390 .054 -.080 .264 .148 .643 .368

θ̂EL -.005 .113 .080 .370 .056 -.059 .189 .119 .570 .275

θ̂ld c=.1 -.016 .100 .061 .274 .047 -.064 .182 .110 .542 .258

c=.2 -.027 .090 .056 .233 .037 -.076 .166 .100 .503 .215

Table 2. Estimation of Dynamic Panel Data Model (2)

homoskedastic & asymmetric uit θ = 0.4, homoskedastic uit

bias RMSE MAE Pr{|θn − θ0| > d} bias RMSE MAE Pr{|θn − θ0| > d}

d = .1 d = .2 d = .1 d = .2

θ̂GMM -0.221 .312 .230 .804 .580 -.005 .134 .091 .457 .124

θ̂CUE .002 .213 .168 .732 .404 -.025 .141 .095 .477 .131

θ̂EL -.023 .176 .137 .627 .306 -.0018 .119 .079 .388 .075

θ̂ld c=.1 -.022 .162 .125 .575 .247 -.0016 .115 .076 .373 .067

c=.2 -.029 .134 .093 .472 .141 -.0010 .104 .070 .340 .053
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than GMM (37 percent), though still it is high. EL has a good performance (28 percent), and by using

the minimax method with c = 0.2, the probability is reduced to 21 percent, nearly one third of that of

GMM. The last result seems to support the theoretical results by Kitamura and Otsu (2005) discussed

in Section 4.1. Similar patterns emerge for the third design with asymmetric errors; again, note the

drastic reduction of the deviation probability with d = .2 by the minimax estimator with c = .2 (the

probability is 14 percent, compared with the 58 deviation probability of GMM, for example). In the

fourth design, EL and its minimax versions continue to outperform GMM and CUE.

8.2.2. Experiment 2. This experiment is concerned with testing, in particular the power properties of

the empirical likelihood ratio test. Pseudo-samples {zi}n
i=1 are independently drawn from a distribu-

tion F , and by adding a location shift term c, xi = zi + c, i = 1, ..., n, are calculated. Three specifica-

tions of F are considered: (1) standard normal Φ(z), (2) normal mixture .1Φ(z− 9) + .9Φ(z+ 1), and

(3) lognormal Φ(log(z)), z > 0. The null hypothesis is: E[x] = 0. This is the simplest possible ex-

ample of overidentifying restrictions: the number of moment conditions is one and no parameters are

estimated, so the degree of overidentification is one. Two statistics are used to test this null; one is the

empirical likelihood ratio `EL and the other is W = n(x̄2)/n−1
∑n

i=1(xi− x̄)2, where x̄ = n−1
∑n

i=1 xi

(“W” stands for “Wald”). The “Wald” statistic is a feasible J-statistic in this simple setting. The

sample size n is set to be 50. Tables 3-6 report rejection frequencies of the two tests.

The standard normal distribution belongs to the family of distributions discussed by Kariya

(1981), for which W is Uniformly Most Powerful Invariant (UMPI). In this sense, the experimental

design with normal z’s (Table 3) is favorable to W , since no other invariant test should outperform

W after size correction, for any finite sample size. Nevertheless, Table 3 shows that the power of

Table 3. Standard Normal,
Size = 0.01

Size Uncorrected Size Corrected

c `EL W `EL W

0.0 0.012 0.013 0.010 0.010

0.3 0.322 0.348 0.300 0.303

0.5 0.809 0.832 0.789 0.794

Table 4. Normal Mixture,
Size = 0.01

Size Uncorrected Size Corrected

c `EL W `EL W

-1.2 0.887 0.574 0.868 0.028

-0.6 0.174 0.043 0.148 0.001

0.0 0.011 0.041 0.010 0.010

0.6 0.082 0.206 0.073 0.075

-1.2 0.344 0.553 0.320 0.263
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Table 5. Normal Mixture,
Size = 0.05

Size Uncorrected Size Corrected

c `EL W `EL W

-1.2 0.961 0.876 0.960 0.729

-0.6 0.361 0.199 0.353 0.093

0.0 0.055 0.085 0.050 0.050

0.6 0.225 0.348 0.207 0.224

-1.2 0.614 0.727 0.594 0.605

Table 6. Lognormal,
Size = 0.01

Size Uncorrected Size Corrected

c `EL W `EL W

-1.0 0.582 0.752 0.404 0.468

-0.6 0.325 0.480 0.176 0.201

0.0 0.034 0.056 0.010 0.010

0.6 0.640 0.248 0.421 0.003

1.0 1.000 0.947 0.998 0.338

the empirical likelihood ratio keeps up with that of W reasonably well. (The power curves for the

standard normal are symmetric, so only the results for nonnegative c’s are reported in Table 3.)

In the normal mixture and lognormal cases, the size distortion of W makes power comparison

difficult and misleading, and size corrected power might give a better picture. Table 4 shows the

excellent power properties of the empirical likelihood ratio test. When the deviation from the null

is c = −1.2, the power of `EL is nearly 90 percent, whereas the power of W is extremely poor (2.8

percent). Qualitatively similar results are obtained for larger nominal sizes (see Table 5), and for

other distributions such as the lognormal (see Table 6). In summary, the simulation results seem

to be consistent with the large deviation optimality results of the empirical likelihood ratio test in

Section 4.

9. Conclusion

This paper has discussed several aspects of empirical likelihood. Two different but intercon-

nected interpretations for empirical likelihood have been offered. One can view empirical likelihood

as NPMLE, which has a long history in statistics. The literature on empirical likelihood initiated by

Owen (1988) demonstrates that NPMLE applied to a moment restriction model yields an attractive

procedure, both practically and theoretically. Moreover, applications of empirical likelihood extend to

other problems that are important in applied economics, as discussed in the present paper. Alterna-

tively, one can view empirical likelihood as GMC with a particular choice of the “contrast function.”

This line of argument yields a variety of empirical likelihood-type estimators and tests, depending

on the choice of the contrast function. The theory of convex duality shows a clear connection be-

tween GMC and other related estimators, including Smith’s GEL. Theoretical considerations seem to

indicate that the contrast function used for empirical likelihood is often the most preferred choice.
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A natural conjecture sometimes made in the literature is that empirical likelihood may bring

efficiency properties analogous to those of parametric likelihood to semiparametric analysis, while

retaining the distribution-free properties of certain nonparametric procedures. The results described

in this paper present affirmative answers to this conjecture. In particular, the large deviation principle

(LDP) provides compelling theoretical foundations for the use of empirical likelihood through Sanov’s

theorem.

Another attractive aspect of empirical likelihood is that it directly uses the empirical distribu-

tion of the data, which has intuitive and practical appeal. It avoids, or at least lessens, the problem of

choosing tuning parameters that often introduce a fair amount of arbitrariness to nonparametric and

semiparametric procedures. A related and important point is the practicality of empirical likelihood.

The use of convex duality transforms seemingly complex optimization problems into their simple dual

forms, thereby making empirical likelihood a highly usable method. This paper has provided discus-

sions on the implementation of empirical likelihood as well as numerical examples, so that they offer

practical guidance to applied economists who wish to use empirical likelihood in their research.

10. Appendix

Derivation of Equations (5.3) and (5.4). The objective function to be maximized is

−
n∑

i=1

log(1 + γ̂(θ)′g(zi, θ)).

Consider the first order condition. Since the γ̂(θ) is an optimizer (for a given θ), the derivative of γ̂

with respect to θ drops out by the envelop theorem. Therefore:

(10.1)
n∑

i=1

∇θg(zi, θ̂EL)′γ̂

1 + γ̂′g(zi, θ̂EL)
= 0, γ̂ = γ̂(θ̂EL).

Now, the first order condition for γ̂ is
n∑

i=1

g(zi, θ)
1 + γ̂′g(zi, θ)

= 0.

Manipulating this yields

(10.2) γ̂ =

[
n∑

i=1

g(zi, θ̂EL)g(zi, θ̂EL)′

n(1 + γ̂′g(zi, θ̂EL))

]−1

ḡ(θ̂EL).

By (10.1) and (10.2),[
n∑

i=1

∇θg(zi, θ̂EL)

1 + γ̂′g(zi, θ̂EL)

]′ [ n∑
i=1

g(zi, θ̂EL)g(zi, θ̂EL)′

n(1 + γ̂′g(zi, θ̂EL))

]−1

ḡ(θ̂EL) = 0.
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Use the definition of p̂ELi given by (2.6) to obtain (5.3).

To obtain (5.4), differentiate ḡ(θ)′S̄(θ)−1ḡ(θ) by θ (assume that θ is a scalar for the ease of presenta-

tion) to obtain

∇θḡ(θ̂cue)′S̄−1(θ̂cue)ḡ(θ̂cue)− ḡ(θ̂cue)S̄−1(θ̂cue)
1
n

n∑
i=1

g(zi, θ̂cue)∇θg(zi, θ̂cue)′S̄−1(θ̂cue)ḡ(θ̂cue)

=

[
∇θḡ(θ̂cue)−

(
1
n

n∑
i=1

∇θg(zi, θ̂cue)g(zi, θ̂cue)

)
S̄−1(θ̂cue)ḡ(θ̂cue)

]′
S̄−1(θ̂cue)ḡ(θ̂cue)

= D̃(θ̂cue)′S̄−1(θ̂cue)ḡ(θ̂cue)

= 0.

�
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