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Efficiency in Large Dynamic Panel Models with Common Factor

Abstract

This paper deals with efficient estimation in exchangeable nonlinear dynamic panel
models with common unobservable factor. The specification accounts for both micro- and
macro-dynamics, induced by the lagged individual observation and the common stochas-
tic factor, respectively. For large cross-sectional dimension, and under a semi-parametric
identification condition, we derive the efficiency bound and introduce efficient estimators
for both the micro- and macro-parameters. In particular, we show that the fixed effects
estimator of the micro-parameter is not only consistent, but also asymptotically efficient.

The results are illustrated with the stochastic migration model for credit risk analysis.
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1 Introduction

This paper considers efficient estimation in nonlinear dynamic panel models with common
unobservable factor. We focus on exchangeable specifications that are appropriate to an-
alyze a large homogeneous population of individuals featuring rich patterns of serial and
cross-sectional dependence. Such a framework is encountered in credit risk applications,
where the panel data are the rating histories of a large pool of firms in a given industrial
sector and country The common factor represents a latent macro-variable, such as the
sector and country specific business cycle, that introduces dependence across the rating
dynamics of the firms, the so-called migration correlation. The purpose is to predict the
future risk in a large portfolio of corporate bonds or credit derivatives issued by the firms
in the pool.

The model involves both a micro- and a macro-dynamic. Conditional on a given factor
path, the individuals are assumed independent and identically distributed, with observations
yit, t varying, following a same time-inhomogeneous Markov process for any individual
The transition density.(y;:|y;.—1, fi; 5) at datet depends on the factor valye and the
unknown parametes. The micro-dynamic is captured by the lagged individual observa-
tion y;;—; and unknown parametetr. The macro-dynamic is driven by the time-varying
stochastic common factof,. The latter is unobservable and follows a Markov process
with transition densityy( f;|f;—1; ), which depends on the unknown parameteiVhen
this common factor is integrated out, it introduces both non-Markovian serial dependence
within the individual histories, and cross-sectional dependence between individuals.

When the cross-sectional dimensions fixed and the time series dimensidntends
to infinity, the Maximum Likelihood (ML) estimators of micro-parameteand macro-
parameter) are asymptotically normal and efficient. However, this asymptotic scheme is
not appropriate for a setting involving very largeand moderately largé’, as in credit
risk applications. For instance, for corporate rating data the number of firms is typically

of the ordern ~ 10,000, while the number of dates is abolit~ 20 with yearly data.

1This framework is also encountered in the securitization of a pool of loans (Collateralized Debt Obliga-

tions, CDO), or insurance contracts [Insurance Linked Securities (ILS) and longevity bonds].



For mortgage data, we typically hawe~ 100,000 — 1, 000, 000 mortgages and’ ~ 200
months.

The aim of this paper is to derive the efficiency bound for estimating both the micro-
parametep and the macro-parametérwhenn, T’ — oo and7'/n — 0. The derivation
has to account for the different rates of increasing information concerning the two types of
parameters. First, we show that the efficiency bound for micro-paramédts¥s not depend
on the parametric model defining the macro-dynamic. In particular, this bound coincides
with the efficiency bound with known transition of the factor, and also with the semi-
parametric efficiency bound when the transition of the factor is left unspecified. Second, a
consistent and (semi-)parametrically efficient estimator of the micro-parameter is the ML
estimator of3 computed as if the factor values are fixed time effects. To get the intuition for
these findings, it is useful to remark that our specification with random time effects can be
seen as a Bayesian approach, with pﬁ%rg(ft|ft_1; 6) on the factor values. The results
above provide an example of the wéﬁiknown asymptotic equivalence of frequentist and
Bayesian methods in large sample, implying in particular the irrelevance of the prior choice.
Third, an efficient estimator of the macro-parametes the ML estimator computed by
replacing the unobservable factor values with consistent cross-sectional approximations.

In Section 2 we introduce the nonlinear dynamic panel model with common factor. This
model includes the single risk factor (SRF) model suggested for the regulation of credit
risk in Basel 2. Then, we explain why our specification is not simply a panel model with
fixed effects, as usually considered in the econometric literature. The efficiency bound
is derived in Section 3. The derivation is based on an asymptotic expansion of the log-
likelihood function. For this purpose, the integration of the latent factor is performed
along the lines of the Laplace approximation [Jensen (1995)]. If the micro-parameter is
semi-parametrically identified, we show that the efficiency bound for micro-parameter
is independent of the parametric specification of the factor dynamics. Section 4 explains
how to easily derive efficient estimators of both parameters. We first show that the fixed
effects estimator of the micro-parameter is efficient. This estimator is used to derive con-

sistent approximationg, of the factor values. Then, we show that the estimator of the

2See Aigner et al. (1984) for a discussion of this interpretation in a general latent variable setting.



macro-parameter derived from maximizing the macro-likelihood after substitution of the
factor valuesf; by their approximationgﬂ, is efficient. Finally, we discuss the link with

the granularity adjustment introduced in Pillar 2 of the Basel 2 regulation. In Section
5 the results of the paper are applied to the stochastic migration model used for credit
risk analysis. In this model, the observable endogenous variable corresponds to the rating
and the common stochastic factor accounts for migration correlation. The patterns of the
efficiency bound, and the computation of the efficient estimators, are discussed for this
example. Section 6 concludes. The proofs of the results are gathered in the Appendices
A.1-A.4. The proofs of the technical Lemmas are given in Appendix B on the web-site

http://lwww.istituti.usilu.net/gagliarp/proofsPANEL.htm.

2 Exchangeable nonlinear panel model with common fac-

tor

2.1 The model

Let us consider panel daga for a large homogeneous population of individuais 1, ..., n
observed at dates= 1, ..., 7. We assume a nonlinear dynamic specification with common

factor such that:

A.1: Conditional on a factor patfif;), the individual historiegy;;), i = 1, ...,n, are i.i.d.
time-inhomogeneous Markov processes of order 1, with transitiorhgf;|v; :—1, fi; 3)

and unknown parametet in R?.

A.2: The factor(f;) is a Markov process of order 1 iR, with transition pdfg(f;|f;_1;0)

and unknown parametérin R?.

We denote byj, andd, the true values of parametefsandd, respectively. The common
factor f, is unobservable and has to be integrated out to derive the joint density of the
observationg);;. The latent factor features both non-Markovian individual dynamics and

dependence across individuals. The distribution is exchangeable, i.e. symmetric w.r.t. the



individuals. * The focus is on the efficient estimation of both micro-paramgtend
macro-parametet. 4
We introduce the next Assumptions A.3, A.4 and A.5 concerning the stationarity and

the mixing properties of the model.
A.3: The process$y ¢, ..., ynt, f¢) IS strictly stationary, for any: € N.
A.4: The process$f,) is strong mixing.

A.5: Conditional on the factor patfif;), process(y;) is strong mixing witha-mixing
coefficientsay, [(f;)], h € N, for any path(f;) P-a.s., such that” [« [(f:)]] — 0 as

h — oo.

Assumption A.5 requires that the individual procesggsg) are strong mixing, conditional
on the factor path. The conditional mixing coefficients can depend on the factor path, but
their expectation converges to zero as thedagcreases. This assumption is similar in
spirit to the work in Granger (1980), Granger, Joyeux (1980), Bougerol, Picard (1992).
Note however that no restriction on the decay raté“dfv, [(f;)]] w.r.t. & is imposed in
Assumption A.5. Thus, we are not concerned by the effect on serial dependence induced by
the integration of the latent factor. Assumptions A.3-A.5 are used to study the asymptotic
behavior of nonlinear aggregates of the type:

1 T 1 n

T Z @ (g Z a(Yit, ft, 5)) ;

t=1 =1

asn,T — oo, wherea is a matrix-valued function of individual observatigyy, factor
value f; and micro-paramete®, andyp is a continuous mapping. The precise asymptotic
results are provided in Appendix 1. These results are used to derive the asymptotic proper-

ties of the estimators introduced in Section 4.

3Note that the exchangeability is equivalent to the existence of a factor representation [see e.g. de Finetti

(1931), Hewitt, Savage (1955)].
“Exchangeable linear panel models are considered in Hjellwig, Tjostheim (1999) and Hansen, Nielsen,

Nielsen (2004).



2.2 The single risk factor (SRF) model

The specification above is motivated by the single risk factor model introduced by Vasicek
(1987), (1991), and recommended for the analysis of credit risk in the second Pillar of
Basel 2 [BCBS (2001)], concerning internal models. The objective is to analyze the risk
of a portfolio of loans or credit derivatives, included in the balance sheet of a bank or
credit institution. These portfolios contain several millions of individual assets and have
to be segmented into subportfolios, which are homogeneous by the type of contract (asset)
and by the type of borrowers, including at least their ratings among their characteristics.
The model is applied to these homogeneous subportfolios separately. The sizes of these
subportfolios are still rather large including some 10 thousands of individual loans for
mortgages and credit cards, for instance.

The basic Vasicek model is written for firms, but the same approach is applicable to
consumers. This model introduces the askgtand liability L, ; as latent variables. Then,

the latent model is written on the log-ratio of asset to liability = log(A;:/L; ) as:
yii=a+BF +oug,t=1,..T, icP,

whereP; denotes the set of firms in the portfolio, which are still alive at tin{ealled
Population-at-Risk), and where the common fadfpand the idiosyncratic factors ; are
independent standard Gaussian variables. The sensitivity coefficigits are indepen-
dent of the individuals, according to the definition of an "homogeneous” portfolio. The

observed endogenous variable is the default occurrence:
Yie = V4, <L, = ]ly;jt<o-
We deduce the probability of default conditional on the common factor:
PD, = Py, = 1|E] = @[~ (a/0) - (8/0) F].

The observed default occurrences are independent with Bernoulli distribution
v+ ~ B (1, PDy), conditional on the common factor. This basic model can be extended in

various ways by allowing for a dynamics of the common factor, or for a joint analysis of



more than two rating levels by means of stochastic migration models describing the tran-
sitions between AAA, AA, ... . The advantage of this specification is to distinguish the
idiosyncratic risks; ;, which can be diversified, and the systematic fisk

Finally note that the marginal probability of default D = & (—a/\/m>,

whereas the default correlation between any two firrasd; is:

p= Corr (yi,t, yjﬂf) =V <_05/ V 62 + 027 _Oé/ 52 + 0'2; P*) )

wherep* = /3?2/ (32 + o?) is the correlation between the log asset-to-liability ratios,
and (., .; p*) denotes the joint cdf of the bivariate standard Gaussian distribution with
correlation coefficienp*. In the new regulation, the required capital depends on the values
of PD andp, that is, indirectly on the values, 3, o, and is very sensitive in particular

to the default correlation. This explains the importance of a simple, robust and efficient

estimation of micro-parameter

2.3 The panel model with fixed effects

The econometric literature on nonlinear panel models with fixed effects [see e.g. Hahn,
Newey (2004)] considers specifications such that the variaples = 1,2,...,n,t =

1,...,T, are independent with pdf (v; +; «;, 0), whereq; is the fixed effects of individual

i. ° The focus of this literature is on the correction of the bias of the ML estimatér of
caused by the incidental parameters problem [Neyman, Scott (1948); see also Lancaster
(2000) for a review]. The model introduced in Section 2.1 can be seen as a model with
fixed time effects instead of fixed individual effects. However, the similarity is not total,

for the following reasons:

i) In practicen is much larger thard’, and therefore the incidental parameter prob-
lem is much less pronounced with fixed time effects than with fixed individual effects. In
particular, the bias corrections are less important in our setting and even not required if
T/n— 0.

i) The nonlinear panel model with common factor in Section 2.1 is clearly a time series

model introduced for prediction purpose. For instance, the SRF model of Basel 2 (Section

5See Hahn, Kuersteiner (2004), Arellano, Bonhomme (2006) for extensions to a dynamic setting.
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2.2) is the basis for determining the distribution of the future portfolio value and the cor-
responding 1% quantile, called CreditvVaR. At the opposite, a model with fixed individual
effects is used to get a segmentation of the population in order to get homogeneous seg-
ments, i.e. with similary; values. For instance, in the credit risk problem, the models with
fixed individual effects are typically used to get the homogeneous subportfolios, whereas
the SRF model is written for each homogeneous subportfolio to analyse jointly the evolu-
tion of their risks.

iii) As a consequence, we are also interested in the filtering of the factor values, in their

dynamics, that is in macro-parametgiand in their interpretations.

3 Efficiency bound

3.1 The likelihood function

The jointdensity ofjr = (y;,t =1,...,T,i =1,...,n)andfr = (f;,t = 1,...,T) is given
by:

T

(YitlYit—1, fr; )H (fel fi-150)

! yr, fr3 8,9)

n
=1 t=

h
= l(y_T\f_T’ B)1(fr:0), (sa)

The density ofyr is obtained by integrating out the factgfs:

n T

T T
Huri0.0) = [ [TITLA ndonicn. s o) [Lotrdsiv0) [T (3.1)

t=1 i=1

T T
= / /eXp{Zzlogh (YitlYii—1, fo; )}Hg(ft|ft—1;9)det'
t=1 t=1

t=1 i=1

For largen, the integral with respect to the factor values can be approximated by expanding
the integrand around its maximum w.r.t. the factor, along the lines of the Laplace approxi-
mation [see e.g. Jensen (1995)]. This expansion yields an integrand of a Gaussian micro-
dynamic model. Specifically, let us define for amyhe cross-sectional ML estimator of

the factor value:

fut(B) = argmax > logh (yislyie, fii 3). (3.2)
=1



Proposition 1. The joint density ofyr) is such that:

TK/2 T T n

[(yr; B,0) = (%”) H[detfntw)rl”HHh(yi,t|yi,t_1,fm<ﬁ);ﬁ)

t=1 t=1 i=1

H (£ 0) s (9):0) exp | 00 0.0)]

where:

9%logh R
Z aftoag}t (yi,t|yi,t—la It (5) ;5) )

U,r (8,0) = O,(1) asn,T — oo, and the probability order), is w.r.t. the true distribu-

tion.
Proof. See Appendix 2. O

From Proposition 1 we deduce an expansion for #iB-§tandardized) log-likelihood

function of the sample:

L.r(5,0) = nLT log (yr; 3,0) -

Corollary 2. The @7T-standardized) log-likelihood function is such that:

Lo (8,6) = L3 (8) + - Lar (5,6) + 3 Loir (8,0), 33)
where: .
1 - .
Lin (9) = o D2 D osh (il Fu (8)38) (3.4)
L1r (8,) ———Zlogdetzm Zlogg(fm Nuit (9):60), (35)

andﬁng (6, 6) = nT (ﬁa 6)

FunctionZ; . (), called profile log-likelihood function, is the log-likelihood Gfcon-
centrated w.r.t. the factor values, as if the latter are nuisance parameters. In Corollary
2, the profile log-likelihood functiorC’ ;. () is the leading term in an asymptotic expan-
sion of the log-likelihood functiorC,r (3,6) in powers ofl/n. The transition density

of the factor enters in the teri, ,,r (5, 6) at asymptotic ordet /»n, and is expected to
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be irrelevant for the efficiency bound gfwhenn — oo (see Section 3.2 for a precise
statement). These results provide an example of the asymptotic equivalence of frequentist
and Bayesian methods in large sample. To get the main intuitiof, let fixed for a mo-
ment. Then, our specification with stochastic common factor can be seen as a Bayesian
approach w.r.t. to the time effects parameters, with prior derj%itg/(ft\ft_l; 0). ® As the
cross-sectional dimensiontends to infinity, it is known from tgzliyesian statistics that the
posterior distribution of the parametgér, scaled by,/n, approaches a normal distribution
centered at the ML estimatqf,(3), for given paramete8. This is why the "Bayesian”
posterior density function fas given in (3.1) corresponds, up to a scale factor, to the joint
density of (yr) and (fr) with f, replaced byf..(3), t = 1,...,T. The irrelevance of the
second term in the RHS of (3.3) involving the transition density of the factor corresponds to
the irrelevance of the prior distribution in large sample. Thus, the Bayesian log-likelihood
L,r(8,0) approaches the log-likelihood’ (), which is the "frequentist” log-likelihood

for g concentrated w.r.t. parametefist = 1,..., 7. Our results show that this asymptotic
equivalence remains true when7 — oo such thatl’/n — 0. The additional term in
L1,.7 (5,0) involves the determinant of the Hessian matfjx(3), which is the Jacobian

for a change of variable performed in the Laplace approximation (see the proof of Propo-
sition 1). The terml,, () corresponds to the term introduced by Cox and Reid (1987)
in their modified profile likelihood to correct the likelihood function after concentration
w.r.t. nuisance (incidental) parameters. For the derivation of the semiparametric efficiency
bound, the term involvind,,; () is irrelevant whem — oo under the semi-parametric

identification conditions given below.

3.2 Efficiency bound

The ML estimator(é, é) is defined by:

(3, 9) = argmax Lur (5,0). (3.6)

6This prior depends on "hyperparametérand is independent of parameter
’In his discussion of the Cox and Reid (1987) paper, Sweeting (1987) suggests that this correction term can

be derived in a Bayesian setting, by integrating the nuisance parameters and using a Laplace approximation.



Under suitable regularity conditions, we prove in Appendix 3 that the ML estimator is

asymptotically normal:

VT (B - ) FRUIE By, B
VT (- 6, o) \ By By ))

with different rates of convergence for the micro- and macro-component, that areffoot-

Bj, B}
and root7", respectively. The asymptotic variance-covariance mafix- oo e
Bys By
defines the efficiency bound for estimatifig) 4).
To compute the efficiency bound, let us introduce the large sample counterparts of the
likelihood terms in the RHS of (3.3).

(i) Let us first consideL? .(3). We can define at each datéhe pseudo-true factor value:

f: (B) = arg max Eo [log b (yielyii—1. £38) | f2] »

wherek, [ | H denotes the expectation w.r.t. the true conditional distributidg,of y; ;1)
at datet given f; = {f;, fi—1,...}. This function yields the factor valug (3) that maxi-
mizes the limiting cross-sectional log-likelihood at dgteor any given parameter valuye
It corresponds to the population counterparf,g{(ﬁ) in (3.2) whenn — oo. The pseudo-
true factor valuef; (3) is a function of both parametet and informationf,. Moreover,
by the properties of the Kullback-Leibler discrepancy at the true parameter ygltee
pseudo-true factor valug (5,) coincides with the true factor valug, P-a.s., for anyt.

Then, define the function:
. 1 <&
L(B) = p“mT—wOT Z Ey [logh (Yitlyit—1, fr (B); B) ’ﬂ]
= Ko [log h (yit’yi,tfla fi (5) 55)] .

The assumptions below concern the identification of paramkter

A.6 (Global semi-parametric identification assumption for 5): The mappingd —
L*(B) is uniquely maximized at the true parameter valye

0°L" (5o)

A.7 (Local semi-parametric identification assumption for/3): The matrix/; = _W

is positive definite.
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The matrix/; is given by (see Appendix 3):

I5 = Eo [1ss(t) — Tap () Irp(t) ™ Tpp(t)] (3.7)

where Iga(t), I5s(t), Igp(t) and I;3(t) = Igs(t)’ denote the blocks of the conditional

information matrix at date

B 0*log h (Yitlyii—1, fr; Bo)
(8, f) 08, f)

Assumptions A.6 and A.7 correspond to identification conditions for pararfiétea semi-

I(t) = E 1A

parametric setting, in which the transition of the facfois left unconstrained and is treated
as an infinite-dimensional parameter. This interpretation is justified by the fact that the cri-
terion £*(/3) is the large sample counterpart of the profile likelihood functiijn (3) in
(3.4), that is, the likelihood off concentrated w.r.t. “parameterg;, t = 1,..., 7. When
Assumptions A.6 and A.7 are not met, the identification of paranteteties on the para-
metric modelg(f;|f:—1;0) for the transition of the factor. Intuitively, we would have to
distinguish the transformations of vectérthat are identified by criteriod*(3), and the
transformations off that are identified only with the contribution of the parametric model
g(fi|fi—1;0). This would induce different rates of convergence for these transformations,
that arel/v/nT and1/+/T, respectively. The in-depth analysis of this general setting is
beyond the scope of this paper.

(if) Let us now consider the time series componént, (3, 0) of the log-likelihood.
Under Assumptions A.6-A.7 paramet@rcan be estimated at a rate infinitely faster than
0 and the relevant criterion for identification 6fis the mapping — L£:(5,0), where
L1(5o,0) is the large sample limit of ,,7-(3, 6) in (3.5) for 5 = 3,. We haveL, (5, 0) =
Ey [log g(fi| fi—1;6)], up to a term constant i. Thus, the identification assumptions for

the macro-parameter are the following:

A.8 (Global identification assumption for §): The mappind — FEy [log g(fi|fi—1;0)] is
uniquely maximized at the true parameter vafiye

0?log g (fil fi—1;00)

A.9 (Local identification assumption for#): The matrixl; g9 = Ey | — 2000

is positive definite.

11



Assumptions A.8 and A.9 correspond to the standard global and local identification condi-

tions for estimating in a model with observable factor values.

Proposition 3. Under Assumptions A.1-A.9, andnif T — oo such thatT’/n — 0, the
efficiency bound fof, 0) is:

s (B B\ [ 0
B;ﬁ Bgy 0 ]1_,910
where:
I5 = Eo [1ss(t) — Tap () Irp(t) ™ Tpp(t)]
and
0? log g (ft|ft—1; 90)
Iigg = Lo | — 2000

Proof. See Appendix 3. O

The result in Proposition 3 is a consequence of the expansion of the likelihood function
in Corollary 2. Indeed, under identification Assumptions A.6-A.7 and regularity condi-
tions (see Appendix 3), for large andT" the relevant term for estimation of parameter
is L:r (5). The corresponding limit log-likelihood function 5" (3) , and the efficiency

% . . . 92 L* L ..
bound B, for 3 is the inverse of the Hessialj = —Wf}’). Similarly, the efficiency

—%. Moreover, the (standard-

ized) ML estimators ofJ andf are asymptotically independent. Therefore, the efficiency

boundB;, for 6 is the inverse of the Hessidngy =

bound B}, for 3 given in Proposition 3 is the same as the efficiency bound3farith
known transition of the factor. Finally, matri in (3.7) is smaller than the information
I = Ey [I35(t)] corresponding to the case of observable factor, while méatgixis equal
to the information fo with observable factor. Therefore, the unobservability of the factor
has no efficiency impact asymptotically for estimatthdout has an impact for estimating
(. This is due to the fact that the factor values can be estimated alt/rgte (see Section
4.2), a rate which is infinitely faster than the rate,/T for estimating, if 7'/n — 0, and
infinitely slower than the rate/+/nT for estimatingg.

The efficiency bounds};; for parameteys in Proposition 3 is independent of the para-

metric model( f;| fi—1;6), 0 € RP, for the transition of the factor, that is factor distribution

12



free. This suggests that the efficiency result extends to a semi-parametric setting. Specifi-
cally, the asymptotic semi-parametric efficiency bounébr 3 is the efficiency bound for
estimatings in the semi-parametric model in which the transitigf;| f;—,) of the factor

is a functional parameter. The semi-parametric efficiency bdindn be computed by us-

ing Stein’s heuristic. More precisely, les = g(f;|f;_1;0) be a well-specified parametric
model for the transition of; with parameter) € R? that satisfies Assumptions A.8-A.9,

and letBj;(ge) be the corresponding parametric efficiency bound for estimating
Definition 1. The semi-parametric efficiency boumds defined by:
B = max Bgg(go),

where the maximization is performed w.r.t. the well-specified parametric mgdielsthe

transition of f; that satisfy Assumptions A.8-A.9.

The result in Proposition 3 shows thBt;(gs) is independent ofy. Therefore we

deduce:

Corollary 4. Under Assumptions A.1-A.7, andnifT — oo such thatT'/n — 0, the

semi-parametric efficiency bound is equal to the parametric efficiency bound:

B = Bjy = Eo [Iss(t) — Lgp(t)L1(t) L ps(t)]

Thus, any well-specified parametric modglis the least-favorable one in the sense of
Chamberlain (1987). The results in Proposition 3 and Corollary 4 show that the knowledge
of the parametric model for the transition of the factor, and even the knowledge of the

transition itself, are irrelevant for the efficient estimation of micro-parameter

3.3 Identification in the SRF model

The SRF model of Section 2.2 is such that ~ B(1,® [ («/o) — (8/0) Fi]) and the

observations can be summarized by means of the sufficient staﬁsl\ﬂpg — Z i1, that
n
=1
are the cross-sectional default frequencies. In a semi-parametric framework, in which the
transition of the factor is left unspecified, the micro-parameigtsandj/o are not semi-

parametrically identified. The initial factor can be replacedby ® [— («/0) — (/o) F}] =

13



PD,, and the model becomes; ~ B(1, f;). This corresponds to a degenerate model,
which has no longer micro-parameters. The factor values are approximafechbﬁ)t.
Nevertheless, the default correlation is still semi-parametrically identified and can be con-
sistently estimated at ordey /T by [Gagliardini, Gourgroux (2005a)]:
T
1 — —\2
=3 (PDt - PD)
t=1

p=——= — ,
PD (1 —PD)

T
wherePD = %Z PD,. Of course, the micro-parametergo andj3/o can be identified
when a paramett:rilc specification for the factor dynamics is introduced. For instance, the
SRF model considered by Basel 2 is identifiable due to the assumption that the factor
valuesF, are independent standard normal. We see in Section 5 that the semi-parametric
identification of micro-parameters is recovered either when more than two rating levels are

considered, or in a two-state framework without absorbing state.

4 Efficient estimators and granularity adjustment

In this Section we introduce asymptotically efficient estimators of the micro- and macro-
parameters that are easier to compute than the ML estimators. These estimators rely on
the asymptotic expansion of the log-likelihood funtion and do not involve the numerical

integration w.r.t. the unobservable factor.

4.1 The fixed effects estimator of the micro-parameter

The asymptotic expansion of the likelihood function in Corollary 2, and the derivation of
the efficiency bound in Proposition 3, suggest that the (semi-)parametric efficiency bound
for 5 can be achieved by maximizing the likelihood functi6jy- (), i.e. by computing

the fixed effects estimator which considers fhealues as additional unknown parameters.

Proposition 5. Under Assumptions A.1-A.7, andnif T — oo such thatT'/n — 0, the

14



estimator:

T n
B = argmax >~ S logh (yialyis-r. fur (8)58)
t=1 i=1
is consistent, rootxT" asymptotically normal and (semi-)parametrically efficient.

Proof. See Appendix 3. O

The semi-parametric estimathT achieves the same asymptotic efficiency as a para-
metric estimator that uses the information on the true transitidrf,0f It is computed by
maximizing the likelihood function fof concentrated w.r.t. the factor values.

Proposition 5 completes the standard analysis of the incidental parameters problem. If
T — oo andn is fixed, the fixed effects estimator is not consistentn,lf’ — oo and
T/n — ¢ > 0 (say), the fixed effects estimator is consistent, but not efficfelttbecomes

efficient if n, " — oo with 7'/n — 0.

4.2 Approximation of the factor values

The efficient estimatop?, can be used to derive cross-sectional approximations of the

factor values? A consistent approximation of the factor value at daite
fnT,t = fn,t <B;T> :
This approximation tends tfj at ratel //n. More precisely, we have:

Proposition 6. Suppose Assumptions A.1-A.7 hold, and|&f — oo such thatl’/n — 0.

Then, for any date, conditional onf; we have:

Vi (fura = 1) =5 N (0L (1)7).

81n such a framework, the bias is negligible with respect to the stochastic term of the expansion. Any crude

penalization approach used to eliminate the bias at ardelr{see e.g. Arellano, Hahn (2006), Woutersen
(2002), Bester, Hansen (2005), Arellano, Bonhomme (2006)] will have an effect on the dominant stochastic

term and generally induce a loss of efficiency.
9Consistent approximations of factor values in panel data with large cross-sectional and time dimensions

have been proposed in, e.g., Forni, Reichlin (1998), Bai, Ng (2002), Stock, Watson (2002), Forni, Hallin,
Lippi, Reichlin (2004), Connor, Hagmann, Linton (2007). These papers consider linear non-exchangeable

factor models for the micro-dynamics.
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Proof. See Appendix 3. O

Since@;;T is root»T’ consistent, estimatq?nT,t is asymptotically equivalent to the un-
feasible ML estimatofn,t (6o) for known micro-parametes,. The asymptotic variance
I;s(t)"" of fur, is the inverse of the Fisher information for estimatifigin the cross-

section at date with known j3.

4.3 Efficient estimator of the macro-parameter

The consistent approximations of the factor valﬁ@st can be used to derive an approxi-

mation of the macro-likelihood function:

T
Z log g (fnT,t|fnT,t71; 9) .
t=1

By maximizing this approximate likelihood w.r.f2, we get an efficient estimator of the

macro-parameter.

Proposition 7. Under Assumptions A.1-A.9, andnif T — oo such thatT'/n — 0, the

estimator:

T
Onr = arggnaleogg (fnT,t’fnT,t—n 0) ;
t=1
is root-7" asymptotically normal and efficient.

Proof. See Appendix 3. ]

Estimator 6, is asymptotically equivalent to the unfeasible ML estimator
T

Ory = argmax » log g (fi|fi-1;6) that uses the true factor values. As already noted
%

in Section 3, re[;I:alcing the true factor values by their ne@Bnsistent approximations has
no effect asymptotically for estimatirtat rate rootf’, if 7/n — 0. Proposition 7 extends
results for linear exchangeable factor models in Hansen, Nielsen, Nielsen (2004).
Since Propositions 5 and 7 show that the estimat@gfsandd,, achieve individually
the efficiency bounds for parametetandd, respectively, it follows that the joint estimator

<B;§T, énT> is also asymptotically efficient [see Goardux, Monfort (1995)].

105ee also Connor, Hagmann, Linton (2007) for a similar result in a semi-parametric model with linear

factor structure and nonlinear factor dynamics.
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4.4 Granularity adjustment

Let us now discuss the relationship between the estimators of the micro- and macro-parameters
derived in Sections 4.1 and 4.3, respectively, and the granularity adjustments introduced for
Pillar 2 of the Basel 2 regulation [see e.g. Gordy, Lutkebohmert (2007)]. The estimators
(Bn;p, énT> are asymptotically equivalent to the estimatéfﬁ;p, énT> obtained by maxi-

mizing the approximate log-likelihood function:

L, 6) = Lia(5) + L, (5.6,

which admits a closed form expression. These estimators are called cross-sectional asymp-
totic (CSA) estimators in the recent literature on granularity adjustment [Eourx, Jasiak
(2008)]. The expansion can also be considered up to drtder This expansion provides

a more accurate approximation of the log-likelihood function:

LS8(3,0) = L3g(8) + +L1r(5.0) + 5 Aur(5.6), (@.1)

whereA,,r is given in (A.2) in Appendix 2. This second-order approximation of the likeli-
hood function admits also a closed form expression, and its optimization provides a more
accurate approximation of the unfeasible ML estimator. This estimator, called granularity
adjusted (GA) ML estimator, is defined by:

(350, 021) = argmant2h(5,0). (4.2)

It is easily checked that an estimator asymptotically equivalent to the GAML estimator up

to ordero,(1/n?) is:

N . A A -1 N N
7?76 6nT 82£2%A (6nT7 HTLT> 1 a'Cl,nT (ﬁnT; enT)
A - A |- Y ) . Y
gGA b7 (B, 0")o(8',0") n  9(3,6)
1 aAAnT <BnT> énT)
BTG

The difference between the GAML estimators and the estime(tém,énT) gives the

closed form expression of the granularity adjustment.
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5 Stochastic migration model

5.1 The model

The stochastic migration model has been introduced to analyze the dynamics of corporate
ratings and is a basic element for the prediction of future credit risk in a homogeneous
pool of credits [e.g., Gupton et al (1997), Gordy, Heitfield (2002), Gagliardini, @oauk
(2005b), Feng et al (2008)]. A basic stochastic migration model is the ordered qualitative
model with one factor, which extends the SRF model of Section 2.2 to more than two al-
ternatives. Let us denote hy,, t varying, the sequence of ratings for corporaterlhe
possible ratings are = 1,2, ..., K, say.'! The micro-dynamic model specifies the transi-

tion matrices with elements depending on the factor value:

Tkt = Plyir =klyiz1 =1, fi] =G (W) G (ak—l —oufi — %) 7

(o2} o

wherea; < ay < ... < ax_1 anday,v;,04, 1 = 1,..., K are unknown micro-parameters,
anday = —o0, axg = +o0o. FunctionG is the cdf of a probability distribution, that corre-
sponds to the standard normal distribution for the Probit model, whiéte = ®(x), and

to the logistic distribution for the Logit model, whefé(z) = 1/(1+ e*). The ratios

(ar, — ayfy — ) /o, in the above transition probabilities allow to identify semiparametri-
cally the micro-parameters and the factor values up to location and scale transformations.
For semiparametric identification (see Assumptions A.6-A.7), we impose the constraints
ap =0,00 =1, =0, = 1 whenK > 2, and additionallyp, = 1 whenK = 2 (see
Appendix 4.1).

5.2 Estimation of the micro-parameters
The micro log-density is given by:

log h (yit|yi,t—1a ft; 5)

33 ar — aify — ap_1 — aufy — 7,
:Zzl{yi,t:k,yz‘,pl =l}log {G (%) —G( k—1 Ull t 1)}

k=1 I=1 !

n practice, the alternative = K typically corresponds to default, which is an absorbing state. For

expository purpose, we do not consider an absorbing state here.
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The estimators of the factor values givérmre:

K K
]En,t(ﬁ) = argmaXZZleyt log |:G (w) - G (akl — Oélft — 71):| ) t= 17 "'aTa
ft =1 1= oy o)
(5.1)
and depend on the data through the aggregate caunt®f transitions from ratingat time
t — 1 toratingk at timet, fork,l = 1,..., K andt = 1,...,T. The (semi-)parametrically
efficient estimator of the micro-parameter is:
< ar = aufas(8) = 7 ax1 = ufar(B) =7
A Nl E— Qfnt ) k—1 — Q1 Jnt - M _
Bir =argmaxy > > Nulog [G < p G p
k=1 =1 t=1
(5.2)

This estimator is computed from the aggregate data on rating transition ¢ounts.

To compare the finite-sample distribution of estimaﬁ% and the semi-parametric
efficiency bound, we perform a Monte-Carlo study. We consider the two-statdicase
and a DGP where the transition probabilities are given by a one-factor logit specification.
Under the semi-parametric identification constraints= v, = 0 anda; = 0, = 05 = 1,
the micro-parameter to estimatefis= (a2, 72)’. The common factoy, follows a linear

Gaussian autoregressive process:

fe=p+pfioi +ony, (5.3)

where(n,) isi.i.N(0, 1). The parameter values used in the Monte-Carlo study are displayed
in Table 1.

Table 1: Parameter values

061:1 ’71:0 0'1:]. 062:1 ’}/2:—05 0'2:].

ap=—-00 |ag =0 |ag=+4+0c0 |p=01] p=0>5 |o=05

In Figures 1 and 2, we consider the sample sizes200, T = 20, andn = 1000, T' =
20, respectively. In each figure, the two panels display the finite sample distributions of the
estimatorsé’;;T for the two micro-parameters (solid lines). We also display for each micro-
parameter the Gaussian distributions (dashed lines) with mean equal to the true parameter

value and variance equal to the semi-parametric efficiency bound divided byThe
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estimatorB;;T is computed from (5.2) by numerical optimization, where for giyethe
estimatefnvt(ﬁ) in (5.1) is computed by grid search. As expected from the literature on
stochastic migration, the, parameter, which represents the sensitivity of the transition
probabilities with respect to the factor, is the most difficult to estimate. Its asymptotic
variance is larger and we need more granularity adjustment, that is, the convergence of the
finite sample distribution to the asymptotic one is slower. By comparing Figures 1 and 2 it
is seen that the standard deviations of the estimators scale by a factoRasosuggested

by the rate of convergenaénT of the micro-parameters. Finally, we observe that the finite
sample bias is rather small for both estimators.

The semi-parametric efficiency bound fey is given by'? (see Appendix 4.2):

B, =
) —1
_ 1-— 2
Ey H2.t—-1T22 ¢ (1 — 7T22,t) (1 — Hoi—1722,t ( 7T22’t) @ 2) ft Ji
pae—1mize (1 — miag) + poe 1oz (1 — m224) 3 f, 1
(5.4)

where:

B 1 B 1

T2t = m , T2t = ma

and:

Hit—1 = P Yit—1 = Hft—l] =1- H2t—1-

The matrixB,, involves the probabilitieg, ,_; andu.,_; of the lagged states, conditional

on the factor path, and the conditional variances of the indicator ofxtttat arery; (1 —

To1,) andmag (1 — meo,), according to the previous state. The matHx, depends on

macro-parameters, p, o2 by means of the expectatidfy. The semi-parametric efficiency

bound can be approximated numerically by Monte-Carlo integration (see Appendix 4.3).
In Figure 3 we display the semi-parametric efficiency bound of parameit&s a func-

tion of the autoregressive coefficiemtand the unconditional variancg% of the factor

2ynder the hypothesis, = 0 of no factor effect on the second state, the information matrix reduces to

ft f

mo2(1 — ma2)Eo | p2,4—1 . Therefore, for testing the absence of factor effect, the correction
fo 1

for the factor unobservability is not needed.
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process(f;). The values of the micro-parameters andre given in Table 1. More pre-
cisely, we display the asymptotic standard deviat((%}@Bw)l/Q, wheren = 1000 and

T = 20. The semi-parametric efficiency bound is decreasing w.r.t. the factor variance. The
pattern is almost flat w.r.t. the autoregressive coefficieot the factor, except for values

of p close tol, where the semi-parametric efficiency bound diverges to infinity.

5.3 Estimation of the macro-parameters

Let us now consider the efficient estimator of the macro-parardetefy, p, 02)". This es-
timator is based on the cross-sectional approximations of the factor values: f,. (527*)
from (5.1) and (5.2). The estimatogisand are obtained by OLS on the regression:

fnT,t =p+ anT,t—l +u, t=2,..,7T.
1 T
The estimator of parametef is given bys” = 71 a?, wheret, = fur, — 1 —
t=2

~

ﬁfnT’t_l are the OLS residuals. The estimator= (11, p,02) achieves the asymptotic
efficiency bound with observable factor, that is, the Cramer-Rao bourdifothe linear
Gaussian model (5.3). Thus, the asymptotic efficiency bound is such that the estimators of

(i, p)" ando? are asymptotically independent, root-T consistent, with asymptotic variance:

-1

2 214p0
B, =ae|[ 7 _ [ eotmor —Ho(l+ po)

(1)
fi f? —uo(L+p0)  1—pf

for (1, p)', andB%, = 20 for o°.

In Figures 4 and 5 we display the distributions (solid lines) of the efficient estimators
i1, p ands? in the Monte-Carlo study for sample sizes= 200, T = 20, andn = 1000,
T = 20, respectively. The parameter values are given in Table 1. We also display Gaussian
distributions (dashed lines) centered at the true values of the parameters and with variances
equal to the efficiency bounds divided By As expected, it is more difficult to estimate
the autoregressive coefficientand the variance? than to estimate the intercept The
estimators ands? feature moderate downward biases. By comparing Figure 4 and Figure
5, we notice that the standard deviations of the estimators are rather similar for the two

sample sizes and do not scale with Moreover, by comparing Figure 2 and Figure 5, it
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is seen that the discrepancy between the finite-sample distribution and the asymptotic effi-
ciency bound is more pronounced for the macro-parameters than for the micro-parameters
for our sample sizes. These findings are a consequence of the different convergence rates

of the two types of estimators, that age” and+/nT, respectively.

5.4 Prediction of the factor values

Let us consider the prediction of the future factor vafge, given the information avail-
able at the last daté&' of the sample, wheré = 1,2, --- | is the prediction horizon. If

the factor values were observable, and the macro-parameters were known, the prediction of
L

l—p
prediction error iy, = frrpr — fron = o (hrvn + pnepa + -+ " r),
which is independent of the sample information. The prediction error has zero uncondi-

1— 2L
2P When
1—p?
the factor is unobservable and the macro-parameters are unknown, we can replace the fac-

frop atdaterl is given byf;:,ﬂL =/ + p* fr, for any horizonL = 1,2, ---. The

tional mean, and the unconditional variance is gived/bl}. ., | = o

tor values by their cross-sectional approximations, and the macro-parameteds, by

their efficient estimators-3 We get the term-structure of predictions at d&te

. 1=pt
fT,T+L:,u 1—,6 +p fnT,Tu L= 1727"" (55)

We can decompose the differenger, , = fT,ﬂ 1 — fr.1 between the predicted and true

factor values as:

~L “ ~ 1 - laL 11— pL ~L L *
Err+L — P (fnT,T—fT>+ Ml—,ﬁ _'ul—p +(P —p )fT T ET 4L
1 2 "
8(T,)T+L + 5(T,)T+L +ErrirL- (5.6)

TermSE(le)T +L andsg)T ., are induced by the approximation of the factor values, and by the
estimation of the macro-parameterandp, respectively.
To assess the quality of prediction, we compute the unconditional expectation and vari-

ance of the prediction erraf 1, and of its componentéﬁfwb 55?7)T+L, erryr, forthe

BFor given values of the macro-parameters, a different predictor is obtained by computing the condi-
tional expectation ofr, 1, given the available information on the observable endogenous varighl@is

predictor is equivalent to the one in (5.5) at ord¢n [see Gagliardini, Gougroux (2008)].
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prediction horizond. = 1,2,--- ;5. The DGP parameters are given in Table 1. The re-
sults are displayed in Figure 6 for the sample sizes 200, " = 20 (upper Panels) and

n = 1000, T' = 20 (lower Panels). For both sample sizes and across prediction horizons,
the expectation of 1 is of the orderl0—2 — 1073, and thus the bias of the predictor
frr+r 1s rather small. The main contribution to this bias is typically due to the estima-
tion of the macro-parameters. The contribution of the approximation of the factor values is
small. This contribution is decreasing in absolute value w.r.t. the prediction horizon, since
the predictionf, 1 1, is almost independent of the factor value for large prediction horizon.
The sign of the prediction bias, and its shape as a function of the prediction horizon, are
very different for the two sample sizes. For= 200, T' = 20, the prediction bias can be
either positive or negative, and the expectation;0f, ;, is monotonically decreasing w.r.t.

the prediction horizorl. Instead, fom = 1000, 7' = 20, the expectation of; 1, is @
non-monotonic function of, and the prediction bias is negative up to the investigated hori-
zon. Let us now consider the variance=f;. . The term structures of the prediction error
variances are rather similar for the two sample sizes. At prediction hofizenl, about

90% of the variance ofr 14 is due to the variance of the prediction error with observable
factor and known macro-parameters, while the remaining 10% comes from the estimation
of the macro-parameters. The contribution of the approximation of the factor values is very

small. The variance of; 1, is monotonically increasing w.r.t. the prediction horizon.

6 Concluding remarks

We have considered nonlinear dynamic panel models with common unobservable factor,
in which it is possible to disentangle the micro- and the macro-dynamics, the latter be-
ing captured by the factor dynamic. Such models are largely encountered in financial and
insurance applications, in which structured derivative products are constructed from large
homogenous pools of individual contracts such as mortgages, corporate loans, or life in-
surance contracts. For large cross-sectional and time dimensigfis¢ oo, 7'//n — 0),

we have derived the semiparametric efficiency bound of the parameteracterizing the

micro-dynamics. The semi-parametric efficiency bound takes into account the factor unob-
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servability, and coincides with the bound for known factor transition. Moreover, we have
shown that the fixed effects estimator @fachieves the semi-parametric efficiency. As a
by-product, the examples show that the micro-dynamics can be identified and estimated in
a semi-parametrically efficient way from well-chosen cross-sectional aggregate data. The
main results of the paper are still valid when the model is extended to include observable
explanatory variables. The micro- and macro-dynamics became|y; -1, xit, 2, fi; 3)
andg(f:|fi—1, z:; 0) respectively, where; ; andz; are observed exogenous variables. The
explanatory variables; ; introduce observable individual heterogeneity. The identifiability

of the model requires in particular that the effects of the unobservable factord the

observable macro-variablesin the micro-dynamics can be disentangled.
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Appendix 1
Weak LLN and Slutsky Theorem

In this Appendix we provide asymptotic results for panel models with common factor

to show the stochastic convergence:

TZ@( Z Y;tafnt(ﬁ) ﬁ)) &EO [@(Ut(ﬁ))]v (Al)

uniformly in ﬁ € B, asn,T — oo, whereY;: = (Yi+,Yit—1, " Yit—r), we(B) =
Eo [a(Yig, f:(8), B)| f2], fnt(B) is a consistent estimator gf(3), B c R? denotes the
parameter set, andandgo are functions. The result in Lemma A.1 is proved in Appendix

B on the web-site.

Lemma A.1: Let functiona(Y, f, 3) admit values irR"™*". Assume:

(1) (i) Parameter seB C RY is compact

(i) Eo [lla(Yis, £1(8), B)II°] < oo, foranys € B, Ey [Zlég la(Yie, f:(8), B
4

@ 5 [ aam%g(ﬁ), 8) ] .

(iv) Eo [|[Eola(Yis, f:(8), B)| fi] — Eola(Yis, £:(B), B)| fis -y fr-ml 1] = O (m™),

for somex > 0, asm — oo,

(v) There exists;(3) > 0 such thatF, [Ha(Yi,t, fi(B), 8) — (ﬁ)Hk \ﬂ < (B!, k=

3,4,..., P-a.s., for anys € B, wherep,(6) = Ey [a(Yiy, f1(8), B)|f] .

(Vi) Ep[exp (—u&)] < Crexp (—Chu’) asu — oo, for some positive constants

Cy,C5,6 > 0,where&;, = [T',(1 + Ft)]fl andT'; = supv.(5),
peB

(vii) Conditions(v) and (vi) hold for some;* > 0, %,(3) > 0, I'; = sup%(3) and
BeB

= [ (1+T )} _1, if we replace function byb(Y; ;, f:(3), 3) = sup ||

Fli-f@l<ns OF
and ;. (8) by v4(8) = Ey [b(Yita fe(B), )’ft],
(viii) Plg > u] < CgeXp( C4u5), asu — oo, for some positive constants

= (Yie £.5)],

Cs,Cy, 6 > 0, whereg, = supv,(f3).
BeB

(2) Functiony : R™*" — R is Lipshitz and such thak [|¢(u:(0))]] < oo, for any

£ € Bandar > 2.
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(3) sup sup| fni(8) = fi(B)l| = Op(T "), for b > 0.

1<t<TBeB

(4) n,T — oo such thatn > ¢T' for somec, d > 0.

Then, under Assumptions A.1-A.5:

23 (% > alYis, Fus(B). 6)) — By lp wwm‘ 0.

=1

Intuitively, Lemma A.1 follows from:

(@) The convergence of estimatbyr,(3) to f,(5), and the convergence of the cross-sectional

average Z (Yia, f:(8), B) to i (B) = Eg [a(Yiy, £1(B), 5)| /2] by @ Weak LLN (WLLN)
condltlonal onft, uniformlyint =1,--- ;T andg € B,

(b) The application of the Slutsky theorem with continuous funcgion

(c) The convergence of the time series average(pf(/3)) to the population expectation
by the WLLN, uniformly ing € B.

Since the continuity point,(3) for the application of the Slutsky theorem is stochas-
tic, we need the Lipshitz property far in condition (2). Conditions (1) (v) and (vi) in
Lemma A.1 are used to apply Bernstelns inequality [e.g., Bosq (1998), Theorem 1.2] to
derive a large deviation bound ferz (Yie, f:(8), B) — we(B) uniformly in1 < ¢ < T

andﬁ € B. Conditions (1) (vii) and (viii) combined with (3) are used to show that

_Z [ Kt,fnt ), ) — a(Yi,t,ft(ﬁ),ﬁ)] converges to zero, uniformly ih < ¢t < T

T
andg € B. Finally, the uniform convergence 3{ Z o(ue(B)) to Ey [e(1e(5))] relies on

a mixingale WLLN in Andrews (1988) and convergence results for Near-Epoch Dependent
processes in Davidson (1994).

Lemma A.1 extends to multivariate functiopswhose components satisfy condition
(2). In particular, the convergence result applies for the matrix identity mapping, that is
o(x) = z, z € R"™*". However, the Lipshitz property in condition (2) prevents the appli-
cation of Lemma A.1 wherp is the matrix inversion mapping. The Lipshitz property is

relaxed in the next Lemma A.2.
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Lemma A.2: Leta(Y, f, 3) admit values in the subset Bf *” of the symmetric matrices,

and leti/ be the open subset B *" of the positive definite matrices. Assume:

(1) Conditions(1) (i)-(viii) of Lemma A.1 hold. Moreover:
(ix) u(6) € U, for anyt and 5 € B, P-a.s., and the smallest eigenvaldg5) of
() is such thatF, {sup)\t(ﬁ)%} < 00,

(x) Conditions(1) (vi)-(viii) of Lemma A.1 hold with; = %lé_g ztgg; [, = ZEE %
andg, = Zgg)\t(ﬁ)y ().

(2) Functiony : Y — R is such that:
() ¢ is Lipshitz on any compact subgétc i/,
(i) |e(w)] < C|2]|"(2), foranyw, z € U such thatw = (1+A)z, ||A]| < 1/2,and
some constants' > 0, 7 < 2, and a function) such thatEO[?elIéW(Mt(ﬁ))ﬁ] < 00.
(3) sup supllfe(B) = filB)]| = O,(T""), for b > 0.

(4) n, T — oo such thatn > ¢T for somec, d > 0.

Then, under Assumptions A.1-A.5:

12 ( > Ve fua(9), ﬁ))—Eo[somt(m)] 20, (A2)

sup
BeB

Assumptions (1) (ix)-(x) of Lemma A.2 involve a tail condition on the probability mass
of the stationary distribution of eigenvalue(3) close to0. In condition (2) (i), the Lip-
shitz property ofy holds locally on compact subsetsif The growth of|o(z)| outside
compact sets is bounded by condition (2) (ii). These conditions are sufficiently general to
accommodate the functions used in Appendix 3 to derive the asymptotic properties of

the estimators.

Corollary A.3:  Assume that the conditions (1), (3) and (4) of Lemma A.2 hold. Let
functiony be either:

(A) The matrix inversion mapping : U — R™", p(x) = 271, or
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(B) The mapping : U — R, p(x) = (')~ wherex!! is the upper-lefs-dimensional
block ofz=1, s < r.
Then (A.2) holds.
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Appendix 2

Proof of Proposition 1

We have:

T
yTaﬁ7 / /exp {ZZlogh ymlyzt 1 [ 8) +Zlogg (fel fe=1:0 }det~
t=1

t=1 i=1

Let us now expand the integrand w.tft.aroundf,, (8),t = 1, ..., T, and define:

wnt(ftaft—l) = Zlogh(yi,tlyi,t—bft;ﬁ)

i=1

_ znjlogh (yi,t|yi,t—1’ f"t (5) ﬁ)
=1

+%\/ﬁ (ft fnt (ﬁ)) wt (B) v (ft - fnt (ﬁ))
+10g g (filfi-130) = 1og g (fur (8) | fui1 (8):0)

Then:

(yrs 5,6 IIHh@m%lmﬂ> 8) TL9 (Fur (8) 1Fue1 (8):0)

t=1 i=1 t=1

/.../exp{—%z n t_fnt(ﬁ>>llnt<ﬁ)\/ﬁ<ft_fnt (6))}

t=1

Vn
exp {Z¢nt fe: fie 1)}

Let us introduce the change of variable:

<
fia

t=1

1

7n 1 (B) ' Z,.

2= N (D (o= Fur () = fi= fu () +

Then:

Hyr: 5,9)

TK/2 T T n

— (2%) H [det I, (ﬁ)]_l/2 HHh (yi,t’yi,tfla fnt ) ﬁg (fnt ’fnt 1(8); >

t=1 t=1 i=1 t=1

@TlTK/z/.../exp{—%ZZ;Zt}

t=1

exp {; U,z (fn,t (B) + % [Loe (D72 Zy, fruer (B) + % L1 (8)]? ZH) } I] dz.

t=1
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Thus, function¥ .1 (3, 0) is defined by the Gaussian integral:

exp [(%) v, r (@9)}
- ot [ - [ee] 43 a
exp {Z Yo (f () + = ot (BN Ze Fuaoa (8) + = Unacs ()72 21 ) } Iz

which can be made explicit by expanding functiem {Zle wn,t} in a power series of
Zt, t - ]., 7CT

To simplify the notation, let us consider the one-factor caSe; 1. Then:

exp K%) U,r (5,9)]
E |exp {Z o (f ()4 s O Zu s ()4 = s (9 Z) H ,

where the expectation is taken with respect to a multivariate standard normal distribution

for Z .= (74, ..., ZT)' . Expandingy, ; at orderl /n yields:

; RS “12., ¢ BN 12
Yt (fn,t (B) + \/ﬁ[]n,t (B)] Zty frr—1 (B) + \/E[In,t—l (8)] Zt—1>
11 —3/2 3 11 -2 4
- 67[ LB K (B) 22 + +og 5 Une (B)] Kau(B)Z) +
+ fDmmw, 0) s (6)] 1/2zt+%0m<ﬁ, 0) s (8)] 2 Z_,
+§ Do a(5,60) Una (D)™ 22 + 5 Donu(5,0) (a1 (D) 22,4

2 D l8,6) U (B2 s (D72 22001 +

where:
0™ log h N
Ko Z aftrf (yi,t’?/i,t—l,fnt (6),5) , m=3,4,..,
and:
oilog g

Dypynt(8,0) = (fnt( ) |fn,t—1 (B); 9) , p,q=0,1,2,... .

fPOfL,
By expanding the exponential functiesp {Zle wn,t}, and computing the expectation

W.r.t. Z, it is seen that terms of orders /2, n=3/2, ... involve odd power moments of
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standard normal variables, which are zero. Thus, we get:

M’ﬂ

Dmm L+ ——ZDm nt L1 (B)] 7

Lt (8)]2 Dygit (B, 0) K3.0.4(3)

+

N | —
N~
Mﬂ

o~
Il

1

L1 (B)]) 2 1y ()] Dort (B, ) K -1(53)

+
N | —
N~
(]~

t=2

Lot (B st (3)] " Diome1(8,60)Dorne(3.0) | + 0,(T/n)

N | —
SN -
]~

t

Aur(8,6) + 0,(T /), (A.2)

1

=1+

wherepug denotes the moment of ordeof the standard normal distribution. Proposition 1

follows.
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Appendix 3

Efficiency bound and efficient estimators

In this appendix we derive the efficiency bound and prove the asymptotic efficiency of
the estimators introduced in Section 4. We first provide in Section A.3.1 the list of regular-
ity conditions. Then, in Section A.3.2 we give a preliminary Lemma that is used in Sec-
tion A.3.3 to derive the efficiency bound (proof of Proposition 3). Finally, the asymptotic
properties of the estimators of the micro-parameters, of the factor values, of the macro-
parameters are derived in Sections A.3.4, A.3.5 and A.3.6, respectively (proofs of Proposi-

tions 5, 6 and 7, respectively).

A.3.1 Regularity assumptions

B.1: The setd3 € R? and©® € RP are compact.

B.2: The functionh(yi,t\yLFbft;ﬁ) is such thatFE sup ‘h<yi,t|yi,t717ft;ﬁ)’4 < o0,
pBeB

oh !
sup || 55 Vit |Yie—1, fe: B) < oo, andkE UE (P (yie|Yii—1, fos B fe, fre1, oy fim] |4} =
e || 08

O(1), uniformly inH € N, for any € B.

E

B.3: For any path( f,), there existsy, () > 0 such that

E Uh(%,t@i,t—la fo.B)—E [h(yi,tlyi,t—b Tt 5)|ﬂ |k |ﬁ} < (B!, k=34, ..,

for any s € B, P-a.s..MoreoverE [exp (—u&;)] < C)exp (—Cou®) asu — oo, for some

positive constant§’;, Cy, o, whereg, = %nlf3 [ (B) (14 3(8)] "
S

B.4: The functionh(y; +|vi+—1, fi; §) is twice differentiable w.r.t(4’, f;)’ and the matrix
*h it Yit—15 Jts
H(?Ji,ta Yit—1, fta ﬁ) == a(é% 7;!%,3(%/]6}/?)

aH ity Yi,t—1 Jty !
ZUIBJ (i %ﬁt L 6)' < 00, andkE [HE [H (Yits Yit—1, o, B fe, fimrs oy fiom] H4] =
€

O(1), uniformly inH € N, for any € B.

s such that’ [sup V(s i1, S D] < 00,
peB

E
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Qh(yi,t|yi,t—1, ft; B)

o, 1) o, f)

any 3 € B, such thatE [SupHI(t,B)lH‘l} < oo and E [||I(t,3)7"]|°] < oo for any
BeB

6 eB.

B.5: The matrix/ (¢,5) = E {— @} is positive definiteP-a.s., for

B.6: For any path( /;), there existg",(3) > 0 such that

B 1 H (i oo i ) = 1B 1f] < Tu(B) R k=34, ..
for any 5 € B, P-a.s..MoreoverE [exp (—u&;)] < Cyexp (—Cou®) asu — oo, for some

—1
positive constants’,, C, a, whereg, = inf [H[F(tt(ﬂﬁ))ﬂ (1 * %)} '

A.3.2 A preliminary Lemma

Lemma A.4: Let the estimato(ﬁ, 9) be defined by:
(57 9) = arg,@é%,%}é@ EnT (ﬁ? 0) ’
whereB CR? and©® C RP are compact sets, and:
. 1 1
L1 (8,0) = Lr (B) + Eﬁl,nT (8,0) + ﬁﬁznT (8,0),
is such that:

(1) (i) £:(B) converges in probability to a functiof*(5), uniformly ing € B;
(i) £1.,7(0, 0) converges in probability to a functiofy (3, #), uniformly ing € B,6 € © .

(2) (i) Functions — L£*(3) is uniquely maximized at the interior poifi§ € 55;

(i) Functiond — L1(f, ) is uniquely maximized at the interior poifit € ©.

(3) () The matrix— 2229 is well-defined and converges in probability to(5), uni-

8666
8 ﬁl’nT(/B,G)

formly in 5 € B, with I} := I* (/3,) positive definite(ii) The matrix— IS

well-defined and converges in probability £y (3, 6), uniformly in5 € B,60 € O,

With Iy g9 := 11,60 (B0, 06b) pOSitive definite(iii) SUPgeB.0c0 H - Egﬂngﬁﬁ - H
8L1,n1(8,0)
andsupgeBﬁ€®” éﬁ;; H
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(4) ()

T 2L (B) %T (Bo) ‘ 0 Iy 0
\/_351 nT ﬁo o) 0 ’ 0 ]1799 ’
.. 0Ly 1 (5,0) B
(i) W o Oy (1).
. o T aEQ,nT (ﬁa 9) H _
(5) () ﬁESBI,IGPéG'CQ,nT(ﬁa 0) = Op(1); (ii) S ey |~ Op(1).

Moreover, let:

(" = arg max Lo (B).

Then, ifn, T — oo such thatT'/n — 0, the estimatorss andé are consistent and jointly

asymptotically normal:

BRI GIEH)

Moreover,3 and 3* are asymptotically equivalent, that ig/n T’ <ﬁ - ﬁ*) = 0,(1).
Proof: See Appendix B.

A.3.3 Proof of Proposition 3

The efficiency bound3* is the asymptotic variance-covariance matrix of the ML estimator
(B, é) — arg maxsesgeo Lot (B, 0), where Lo (3,0) is defined in Corollary 2. This
asymptotic variance-covariance matrix is derived by applying Lemma A.3. Let us verify
the conditions of Lemma A.4.

(1) We have:

n

T
L ()= 523 togh (vclieoss o (9:5). (A3)

which converges taC* (3) = Eq[logh (vit|yit—1, f: (5);3)] uniformly in 3 € B (see
Lemma A.1in Appendix 1). Further:

T
Lo (5,0) = — 5 > logdet L (9) + Zlogg<fnt far (8):0). (A%)
t=1

38



converges to:

£4(5,6) = —5 o log et Iy (1 )] + Bo llog g (£, (5) o1 (5):6)],

0% log h .
{_W (yi,tlyi,t_1, fi (ﬁ) aﬁ):| .

(2) Statement (i) follows from Assumption A.6. Statement (ii) follows from Assump-
tion A.8, by usingl; (5o, 0) = Ey [log g (fi|fi—1;0)], up to a constant ifi.
(3) From (A.3), we get by differentiation:

oL (B) dlogh ; :
# = 2; <yi,t|yi,t—1,fnt (ﬁ)ﬁ)

- Z 8fnt Z 810g h (yi,t’yi,t—la fnt (B) ;ﬁ)

J/

uniformly in6 € ©, 8 € B, wherel; (t; ) = Ey

R

=0

= nLT Z Z agLéh <yi,t|yi,t—1a fnt (ﬁ) ?5) )

and:

2 n o2
w — LZ 0 10gh(yzt|yzt 1>fmt(5) ﬁ)

0603 nT — 0603
1 o 52 log h O fu (B)
+ﬁ;i:1 0301, (yztlyzt 1>fnt (B); ﬁ) o3

By differentiating the f.o.c.

Ologh . N
Z of, (yi,t‘yi,t—ly fnt (B) ,ﬂ) =0

w.r.t. 5, we get:

0% log h 821og h ) | Of., 8
Z 01,08 (yzt|yzt 1 fut (B ) Z 2507, <yz‘,t|%,t—1,fnt(ﬁ),5> o5 =0.

Let us introduce the notation:

0% log h -
Iﬁg = ——Z 8ﬁ(8)g6 (yi,t|yi,t717fnt (ﬁ) 76) )

and similarlyZs.(t), I;¢(t). Then we get:

Y
of

= —Ipp(t) M p5(0),
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and

Ly (B) .
0pos’ TZ[[W — Iop (DI () (1) | -

Thus, condition (3i) is satisfied with; = E [155(t) — I;(¢)I1¢(t) ' 1;5(¢)] (see Corollary
A.3).

Moreover, from (A.4) we have:

0L,z (B.0) 1 <~0logg (; ) |
— T (Fu () 1 fnmr (5):0))

and:

aﬁlnTﬁ@ 92 log g . |
0000’ g 0000’ (fnt B) | fri-1(B) 79> .
Thus, condition (3ii) is satisfied withy g9 = E [_ Plogg (f,f, . 90)] _

96000
(4) We have:

\/n—TaﬁnaT/Bﬁo — \/_ Z Z 8logh <yi,t|yi,t715 fnt (5o) ;ﬁo> .
t=1 i=1

By the mean-value Theorem:

oL dlogh
\/WM = LZZ o8 (yz‘,t|yz',t_17ft;ﬁo)

0%log h ~ A
/_nT ZZ 368]‘ (yz‘,t|yi,t—1,ft§50> <fnt (Bo) — ft) )
i=1 t
wheref, are mean values. Using the notation:

9%log h -
Igs(t :__Z aﬁggft <yi,t‘yi7t—1aft§50>a

and the expansion of,; (5o):
. Ologh
VI (fur (B0) = 1) = =I5s®) B2 Z T (il ff), (AS)

wherel;;(t) is based on a mean valyfg we get:

oL " dlogh
Vot ACORNES o T o 2L NP N

o VTS

~ = 1 Ologh
— Lgp(t)11(t) 1_2 WitlYii—1, fr; Bo) | -
i=1

Af



Then, we get:

VL (o) = <= 30 [0) = Loy (0 45 (0)] + 0,1,

n mogh (YitlYit—1, fr; Bo)
V(o) = alogh :
of: (yi,t’yi,tflaftaﬁ(ﬁ
Moreover, by the mean- value Theorem we have:

L1 nr (Bo, 0o) _ dlogg
\/T 90 == \/—Z (fnt ﬁ0)|fnt 1(50) )

where:

- \/—Zalgegg (fel fi=1;60)
e ( 30K (i) v ()~ 1)

T Z 889;)291 (ft|ft—1; 90) Vn (fn,t—l (Bo) — ft—1>> .

By using7'/n — 0, it follows that:

T
\/—c%mTa(foﬁo _ Z logg (il fi1:60) + 0,(1).

Thus:

+ 0,(1).

\/n—Taa;géﬁo) ] :Li (Wa(t) — Isp(t) 1, (8) " s (1))
VT 2z (o) _ VT 90089 (£, fi_1; 00)

By usingFE [7#(75)!@7 ﬁ_ = 0 and a CLT for martingale difference sequence, we get (4i).

From Lemma A.4 we deduce the efficiency bound
A.3.4 Proof of Proposition 5
From Lemma A.4, it follows that/nT (B — B*) = 0,(1). The conclusion follows.
A.3.5 Proof of Proposition 6
We have:
(s ) = (st 1)« 22O 5,

41



where (3 is a mean value. The second term in the RH®;jgl/+/T') from Proposition 5.

The conclusion follows from expansion (A.5).

A.3.6 Proof of Proposition 7
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Appendix 4

Factor ordered qualitative model

A.4.1. Identification

i) Let us first consider the two-state ca$é = 2. The transition matrix; = [m ] is:

G (alfalft*’n) 1—-G (alfalftfﬁ’l)
o o1 o1
T = G <a1—0czft—vz) 1—-G (a1—a2ft—72)
o2 g2

By reparametrizing the coefficients and~,, we can assume, = 0. The transition matrix

G < Oélft+’Yl) ( alft“"Yl)
Ty =
G ( Oészr’YQ) ( azft+’¥2)

We can also scale the parameters to have o, = 1.

becomes:

G(-arfi—m) 1-G(—arfi —m)
G(—aafy —72) 1 =G (—asfi — 1)

Ty =

Finally, by standardizing the factor, we can egt= 1 and~; = 0:

G (=1 1-G(-f)
G(—agfi —72) 1—-G(—aafi — )

Tt =

Then, the values of the factg are identified by the first row of the transition matrix,
t=1,...,T. The values ok, 7, are identified by the second row, whén> 2.

i) Let us now consider the cag€ > 2. Thel-th row of the transition matrix is:

{G (al — ayfy —’Yl) G <a2 — aify —’Yl) e (al — aif —%> N e (CLK1 —aify _71):| 7
oy o} a] a1

forl =1,..., K. As above, we can first set = 0:

[G (_M) G (az —ozzft—%) G (_oqft+%) 1-G <aK_1 —azft—%” |

(A.6)

Second, by normalizing the factor values and the thresholds, we can setr; = 1 and

~1 = 0 in the first row. Then, the transition matrix has a first row given by:

[G (_ft) G (GQ - ft) -G (_ft) o1 =G (CLK—l - ft)] )
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and row! is given by (A.6) forl > 2. From the first row, we can identify the factor valfie
and theK — 2 thresholdsus, ..., ax. Then, the values af;, v;, o; are identified by the row

l,forl=2,...,K,when(K —1)T > 3.
A.4.2 Semi-parametric efficiency bound [Proof of Equation (5.4)]

We have:

K K
log b (Yit|yii—1, fr; B :Zzl{yzt kyyie—1 = U} logm (fe, 3)

k=1 l=1

wherery, (f,, 8) = G (w) -G (W> Thus:

o] a]

a2logh(yzt|yzt 1, fr; B) KX
I{yis =k it— =1 J , ,
s o) At e b = e

where;
J = _ O*my, —l—i omy. omye
YT o) o, f) ol f)

The conditional information matrix is given by:

_82 log h (Yit|Yi -1, ft; Bo)
(B, f) o, f)

wheremy,, = mi(fi, Bo), Je = Ju(ft, Bo) and all functions are evaluated at the true

I(t) = E,

K K
1
ft] E E Eqo [1 {yi,t =k, yit-1= I} |ﬂ _7le Jike b5
t

k=1 =1

parameter and factor values. Using Assumption A.1:
Ey [1 {yi,t =k, Y11 = l} \ﬂ = Fy [Eo [1 {yi,t = k} ‘Z/z’,t—l = l;ﬁ] 1 {yz’,tfl = l} |ﬁ}
= Mgl [yi,tfl = l\ﬁ} = My P [yi,tfl = Z\E] = Tik,tHit—1,

wherey,;—y = P [yi,t,l = Z\E]. It follows that:

K
I t) = Z:ul,tfljl,t’
=1

where:
1 Ompy Ot

K
Ly =D Jue = AT
t kz:; LS e (s f) 000 1)

Then, the semi-parametric efficiency boundiig) ", wherel; = Eq [Is5(t) — Igp(t) I (t) " 15(t)).

]~

(A.7)
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In the two-state logit model, we hayk= (a»,7,)" and

m [ 1AW A ) A8
l—A(ﬁxt) A(ﬁ:pt)

wherez, = (f,,1) andA(z) = 1/ (1 + e 7) is the logistic function. Since;;; = —m,

forl =1, 2, we have:

I, = < 1 . 1 ) Omior  Omay _ 1 Omar  Omay I _ 19

Y\ e LT—mee) 93, £) 0B f) T (L—m24) 9 (3, f,) O (8, f) o
Since®) — A(z) [1 — A(z)], we deduce:

Iy = may (1 —may) &,tfz:t, [=1,2,
where¢,, = (0,0,1) andé,, = (f;,1,a2) . Thus, we have:
ff J
Iﬂﬁ (t) = H2:t-1T224¢ (1 - 7T22,t) ft 1t ) [Bf (?f) = U2,t—1T22¢ (1 - 722,15) (%) 1t
t

Iee(t) = prg—1miog (1 — miog) + plor—1maos (1 — maoy) as.

We deduce the formula (5.4).

A.4.3 Numerical computation of the semi-parametric efficiency bound

The semi-parametric efficiency bou(ﬁ;)_1 can be approximated numerically by Monte-
Carlo integration. Le{(f,:t=—h,—h+1,...,T) be a simulated factor path of length
S =T+ h+ 1. We defineu,_, s by:

i ’
g =ell psll pi1g--- a1, t=1,..,T,

wheree = (1/K,...,1/K)’, and

K
Is(t) = Z/ﬁl,tfl,SIl,zgS, t=1,..T.
=1

Matrices/;; s andIl, ¢ correspond to the matrices in (A.7) and (A.8), respectively, based
on the simulated factor values. Then we approximate majrby
1 T
08 = 7 > sps(t) = Ispr(t)Ispr(t) " s pa(t)]

t=1

for largeT andh.
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Figure 1: Distribution of the semiparametrically efficient estimators of the micro-

parameters, sample size= 200 andT" = 20.

P.D.F. of estimator &,
35 ‘ ‘ ‘

15r

1.6 1.8 2

0.5

The solid lines give the pdf of the semiparametrically efficient estimators of paramétgper Panel, true
valuel) and parametey (lower Panel, true value-0.5). The pdf is computed by a kernel density estimator.
Sample sizes ane = 200 andT’ = 20. The dashed lines in the two Panels give the pdf of a normal distribution
centered at the true value of the parameter and with variance equal to the semi-parametric efficiency bound

divided bynT.
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Figure 2: Distribution of the semiparametrically efficient

parameters, sample size= 1000 and7" = 20.
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The solid lines give the pdf of the semiparametrically efficient estimators of paraméugper Panel, true

valuel) and parametey (lower Panel, true value-0.5). The pdf is computed by a kernel density estimator.

Sample sizes are = 1000 andT' = 20. The dashed lines in the two Panels give the pdf of a normal distri-

bution centered at the true value of the parameter and with variance equal to the semi-parametric efficiency

bound divided by T
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Figure 3: Semiparametric efficiency bound of the micro-parameter
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The figure display{ﬁBj;z)l/Q, whereB;, is the semiparametric efficiency bound for parametgand
n = 1000,7 = 20, as a function of the autoregressive coefficigrand the variancqiip2 of the factor

procesy f).

48



Figure 4: Distribution of the efficient estimators of the macro-parameters, sample size
n = 200 and7" = 20.
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The solid lines give the pdf of the efficient estimators of parame(@pper Panel, true valuel), parameter

p (central Panel, true valug5) and parameter? (lower Panel, true value.25). The pdf is computed by a
kernel density estimator. Sample sizesare 200 andT” = 20. The dashed lines in the three Panels give

the pdf of a normal distribution centered at the true value of the parameter and with variance equal to the

efficiency bound divided b¥".
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Figure 5: Distribution of the efficient estimators of the macro-parameters, sample size

n = 1000 andT" = 20.
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The solid lines give the pdf of the efficient estimators of parame(@pper Panel, true valuel), parameter

p (central Panel, true valu®s) and parametes? (lower Panel, true valué.25). The pdf is computed by a
kernel density estimator. Sample sizesq#are 1000 and7" = 20. The dashed lines in the three Panels give

the pdf of a normal distribution centered at the true value of the parameter and with variance equal to the

efficiency bound divided b¥".
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Figure 6: Term-structures of the expectations and variances of the prediction errors.
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This Figure displays the term-structures of the unconditional expectations (left Panels) and variances (right
Panels) of the prediction errors. The sample sizesiate200, T = 20 in the upper Panels, and= 1000,

T = 20 in the lower Panels. The stars, the diamonds and the squares correspond to the prediction error
7 141, With observable factor and known macro-parameters, the contrib&xﬁéq ;, from the approxima-

tion of the factor value, and the contributi@f;?fT 1, from the estimation of the macro-parameters, respec-

tively. The circles correspond to the term-structures of the total predictionsgrrer ..
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