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1. Introduction

There is a large literature aimed at characterizing the social choice functions
that can be implemented in Bayes Nash equilibria. This literature typically takes
agents’ information as exogenously given and fixed throughout the analysis. While
for some problems this may be appropriate, the assumption is problematic for
others. A typical analysis, relying on the revelation principle, maximizes some
objective function subject to truthful revelation being a Bayes equilibrium. It is
often the case that truthful revelation is not “ex post incentive compatible”, that
is, for a given agent, there are some vectors of the other agents’ types for which
the agent may be better off by misreporting his type than truthfully revealing it.
Truthful revelation, of course, may still be a Bayes equilibrium, because agents
announce their types without knowing other agents types: choices must be made
on the basis of their beliefs about other agents’ types. The difficulty with assuming
that agents’ information is exogenous is that when truthful revelation is not ex
post incentive compatible, agents have incentives to learn other agents’ types. To
the extent that an agent can, at some cost, learn something about other agents’
types, agents’ beliefs when a mechanism is applied must be treated as endogenous.
A planner who designs a mechanism for which truthful revelation is ex post

incentive compatible can legitimately ignore agents’ incentives to engage in espi-
onage to discover other agents’ types, and consequently, ex post incentive compat-
ibility is desirable. The Clarke-Groves-Vickrey mechanism (hereafter CGV)1 for
private values environments is a classic example of a mechanism for which truthful
revelation is ex post incentive compatible. For this mechanism, each agent submits
his or her valuation for each possible choice. The mechanism selects the outcome
that maximizes the sum of the agents’ submitted valuations, and prescribes a
transfer to each agent an amount equal to the sum of the values of the other
agents for the outcome. With these transfers, each agent has a dominant strategy
to reveal his valuation truthfully. Cremer and McLean (1985) (hereafter CM)
consider a similar problem in which agents have private information, but interde-
pendent valuations; that is, each agent’s valuation can depend on other agents’
information. They consider the mechanism design problem in which the aim is to
maximize the revenue obtained from auctioning an object. They analyze revela-
tion games in which agents announce their types, and construct transfers similar
to those in the CGV mechanism. The transfers are such that for each outcome,
(roughly) each agent receives a transfer equal to the sum of the valuations of the

1See Clarke (1971), Groves (1973) and Vickrey (1961).
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other agents. Because each agent’s valuation depends on other agents’ announced
types, truthful revelation will not generally be a dominant strategy. Cremer and
McLean show, however, that under certain conditions2 truthful revelation will, as
in the CGV mechanism, be ex post incentive compatible.
There has recently been renewed interest in mechanisms for which truthful

revelation is ex post incentive compatible. Dasgupta andMaskin (2000), Perry and
Reny (2002) and Ausubel (1999) (among others) have used the solution concept
in designing auction mechanisms that assure an efficient outcome. Chung and
Ely (2001) and Bergemann and Morris (2002) analyze the solution concept more
generally. These papers (and Cremer and McLean), however, restrict attention to
the case that agents’ private information is one dimensional, a serious restriction
for many problems. Consider, for example, a problem in which an oil field is to be
auctioned, and each agent may have private information about the quantity of the
oil in the field, the chemical characteristics of the oil, the capacity of his refinery
to handle the oil and the demand for the refined products in his market, all of
which affect this agent’s valuation (and potentially other agents’ valuations as
well). While the assumption that information is single dimensional is restrictive,
it is necessary: Jehiel et. al. (2002) show that for general mechanism design
problems with interdependent values and multidimensional signals, for nearly all
valuation functions, truthful revelation will be an ex post equilibrium only for
trivial outcome functions.
Thus, it is only in the case of single dimensional information that we can

hope for ex post equilibria for interdependent value problems. But even in the
single dimensional case, there are difficulties. Most work on mechanism design in
problems with asymmetric information begin with utilities of the form ui(c; ti, t−i),
where c is a possible outcome, ti represents agent i’s private information and
t−i is a vector representing other agents’ private information. In the standard
interpretation, ui is a reduced form utility function that gives agent i’s utility of
the outcome c under the particular circumstances likely to obtain given the agents’
information. In the oil field problem above, for example, an agent’s utility for the
oil may depend on (among other things) the amount and chemical composition
of the oil and the future demand oil products, and other agents’ information
affects i’s (expected) value for the field insofar as i’s beliefs about the quantity
and compostion of the oil and the demand for oil products are affected by their
information. In this paper, we begin from this more primitive data in which i
has a utility function vi(θ; ti), where θ is a complete description of the state of

2The conditions are discussed in section 3.
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the world and ti is his private information. For the oil example, θ would include
those things that affect i’s value for the oil — the amount and compostion of the
oil, the demand for oil, etc. The relationship between agents’ private information
and the state of the world is given by a probability distribution P over Θ × T .
This formulation emphasizes the fact that other agents’ information affects agent
i precisely to the extent that it provides information about the state of the world.
The reduced form utility function that is normally the starting point for

mechanism design analysis can be calculated from this more primitive structure:
u(c, t) ≡ Σθvi(θ; t)P (θ|t). Most work that employs ex post incentive compatibility
makes additional assumptions on the reduced form utility functions ui. It is typi-
cally assumed that each agent’s types are ordered, and that agents’ valuations are
monotonic in any agent’s type. Further, it is assumed that the utility functions
satisfy a single-crossing property: a movement of a given agent from one type to a
higher type causes his valuation to increase at least as much as any other agent’s
valuation. We show that the conditions on the primitive data of the problem that
would ensure that the reduced form utility functions satisfy the single crossing
property are very stringent; the reduced form utility functions associated with
very natural single dimensional information problems can fail to satisfy the single
crossing property.
In summary, while ex post incentive compatibility is desirable, nontrivial mech-

anisms for which truthful revelation is ex post incentive compatible fail to exist for
a large set of important problems. We introduce in this paper a notion of ε−ex
post incentive compatibility: a mechanism is ε−ex post incentive compatibile if
truthful revelation is ex post incentive compatible with probability at least 1− ε.
If truthful revelation is ε-ex post incentive compatible for a mechanism, agents’
incentive to collect information about other agents’ is bounded by ε times the
maximal gain from espionage. If espionage is costly, a mechanism designer can be
relatively comfortable in taking agents’ beliefs as exogenous when ε is sufficiently
small. We show that the existence of mechanisms for which there are ε-incentive
compatible equilibria is related to the concept of informational size introduced
in McLean and Postlewaite (2001, 2002). When agents have private information,
the posterior probability distribution on the set of states of the world Θ will vary
depending on a given agent’s type. Roughly, an agent’s informational size corre-
sponds to the maximal expected change in the posterior on Θ as his type varies,
fixing other agents’ types. We show that for any ε, there exists δ such that if each
agent’s informational size is less than δ, there exists an efficient mechanism for
which truthful revelation is an ε-incentive compatible equilibrium.
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We describe the model in the next section and provide a brief history of ex
post incentive compatibility in Section 3. In Section 4 we introduce a generalized
CGV mechanism, along with an alternative efficient mechanism.

2. The Model

Let Θ = {θ1, .., θm} represent the finite set of states of nature and let Ti be the
finite set of types of player i. Let C denote the set of social alternatives. Agent
i0s payoff is represented by a nonnegative function vi : C ×Θ× Ti → <+. R: we
should note that while this assumption by itself is innocuous, it will
not be innocuous when combined with the assumption that there is a
“status quo” that yields payoff 0. These together are what assure the
possibility of efficient outcomes with no infusion of money, and together
they rule out the standard problem of deciding whether or not to build
a public good. We will assume that there exists c0 ∈ C such that vi(c0, θ, ti) = 0
for all (θ, ti) ∈ Θ × Ti and that there exists M > 0 such that vi(·, ·, ·) ≤ M for
each i. We will say that vi satisfies the pure common value property if vi depends
only on (c, θ) ∈ C ×Θ and the pure private value property if vi depends only on
(c, ti) ∈ C × Ti.
Let (eθ,et1,et2, ...,etn) be an (n+1)-dimensional random vector taking values in

Θ× T (T ≡ T1 × · · · × Tn) with associated distribution P where
P (θ, t1, .., tn) = Prob{eθ = θ,et1 = t1, ...,etn = tn}.

We will make the following full support assumptions regarding the marginal dis-
tributions: P (θ) =Prob{eθ = θ} > 0 for each θ ∈ Θ and P (ti) =Prob{eti = ti} > 0
for each ti ∈ Ti. If X is a finite set, let ∆X denote the set of probability mea-
sures on X. The set of probability measures on Θ× T satisfying the full support
conditions will be denoted ∆∗Θ×T
In many problems with differential information, it is standard to assume that

agents have utility functions ui : C×T → R+ that depend on other agents’ types.
It is worthwhile noting that, while our formulation takes on a different form, it is
equivalent. Given a problem as formulated in this paper, we can define ui(c, t) =P

θ∈Θ [vi(c, θ, ti)P (θ|t)] . Alternatively, given utility functions ui : C×T → R+, we
can define Θ ≡ T and define vi(c, t, ti) = ui(c, t). Our formulation will be useful
in that it highlights the nature of the interdependence: agents care about other
agents’ types to the extent that they provide additional information about the
state θ.
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A social choice problem is a collection (v1, .., vn, P ) where P ∈ ∆∗Θ×T . A social
choice function is a mapping q : T → C that specifies an outcome in C for each
profile of announced types. We will assume that q(t) = c0 if t /∈ T ∗, where co
can be interpreted as a status quo point. A mechanism is a collection {q, xi}i∈N
where q : T → C is a social choice function and the functions xi : T → < are
transfer functions. For any profile of types t ∈ T ∗, let

v̂i(c; t) = v̂i(c; t−i, ti) =
X
θ∈Θ

vi(c, θ, ti)P (θ|t−i, ti).

Although v̂ depends on P , we suppress this dependence for notational simplicity.

Definition: Let (v1, .., vn, P ) be a social choice problem. A social choice
function is efficient if for each t ∈ T ∗,

q(t) ∈ argmax
c∈C

X
j∈N

v̂j(c; t).

Definition: Let (v1, .., vn, P ) be a social choice problem. Amechanism {q, xi}i∈N
is:

strongly ex post incentive compatible if truthful revelation is an ex post domi-
nant strategy equilibrium: for all i , all ti, t0i ∈ Ti, all σ−i ∈ T−i and all t−i ∈ T−i
such that (t−i, ti) ∈ T ∗,

v̂i(q(σ−i, ti); t−i, ti) + xi(σ−i, ti) ≥ v̂i(q(σ−i, t0i); t−i, ti) + xi(σ−i, t0i).
ex post incentive compatible if truthful revelation is an ex post Nash equilib-

rium: for all i, all ti, t0i ∈ Ti and all t−i ∈ T−i such that (t−i, ti) ∈ T ∗,
v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti) ≥ v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t0i).

interim incentive compatible (IC) if for each i ∈ N and all ti, t0i ∈ TiX
(t−i,ti)∈T ∗

[v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti)]P (t−i|ti)

≥
X

(t−i,ti)∈T ∗
[v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t

0
i)]P (t−i|ti)
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ex post individually rational (XIR) if

v̂i(q(t); t) + xi(t) ≥ 0 for all i and all t ∈ T ∗.
feasible if for each t ∈ T ∗, X

j∈N
xj(t) ≤ 0

balanced if for each t ∈ T ∗, X
j∈N

xj(t) = 0

Clearly, strong ex post IC implies ex post IC which in turn implies interim IC.
If v̂i(c; t) does not depend on t−i, then the notions of ex post dominant strategy and
ex post Nash equilibrium coincide.3 We will need one more incentive compatibility
concept.

Definition: Let ε ≥ 0. A mechanism {q, xi}i∈N is ε− ex post incentive com-
patible if for all i , all ti, t0i ∈ Ti,

Pr ob{(t̃−i, ti) ∈ T ∗ and (v̂i(q(t̃−i, ti); t̃−i, ti) + xi(t̃−i, ti))
−(v̂i(q(t̃−i, t0i); t̃−i, ti) + xi(t̃−i, t0i)) ≥ −ε|t̃i = ti} ≥ 1− ε.

Note that {q, xi}i∈N is a 0− ex post incentive compatible mechanism if and only
if {q, xi}i∈N is an ex post incentive compatible mechanism.

3. Historical Perspective

As mentioned in the introduction, the typical modeling approach to mechanism
design with interdependent valuations begins with a collection of functions ui :
C × T → < as the primitive objects of study. In this approach, the elements of
each Ti are ordered and a single crossing property (see below) is imposed. To our
knowledge, the earliest construction of an ex post IC mechanism in this framework
appears in Cremer and McLean (1985). In their setup, Ti = {1, 2, ...,mi} and

3For a discussion of the relationship between ex post dominant strategy equilibrium, dominant
strategy equilibrium, ex post Nash equilibrium and Bayes-Nash equilibrium, see Cremer and
McLean (1985).
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C = [0, c] is an interval. Let u0i(c, t−i, ti) denote the derivative of ui(·, t−i, ti)
evaluated at c ∈ C.

Definition: Let q be a social choice rule. An E(xtraction)- mechanism is any
mechanism {q, xi}i∈N satisfying

xi(t−i, ti) = xi(t−i, 1)−
tiX

σi=2

[ui(q(t−i,σi), t−i,σi)− ui(q(t−i,σi − 1), t−i,σi)]

whenever t−i ∈ T−i and ti ∈ Ti\{1}.

There are many E- mechanisms, depending on the choice of xi(t−i, 1) for each
t−i ∈ T−i. In their 1985 paper, CM define such mechanisms and use them (in
conjunction with a full rank condition) to derive their full extraction results.
If q and ui satisfy certain assumptions, then there exists an E-mechanism that
implements q as an ex post Nash equilibrium and is also ex post individually
rational. This is summarized in the next result.

Theorem 1: Suppose that
(i)

u0i(c, t−i, ti + 1) ≥ u0i(c, t−i, ti) ≥ 0
for each i ∈ N, t−i ∈ T−i, ti ∈ Ti\{mi} and c ∈ C. [This is assumption 2 in

CM.]
(ii) The social choice rule q is monotonic in the sense that FIX THIS

q(t−i, ti + 1) ≥ q(t−i, ti)
for each i ∈ N, t−i ∈ T−i, ti ∈ Ti\{mi}.
Then any E-mechanism is ex post IC. If, in addition,

ui(0, t) = 0 for all t ∈ T,
then there exists an E-mechanism {q, xi}i∈N satisfying feasibility, ex post IC

and ex post IR.
Proof : If assumptions (i) and (ii) are satisfied, then any E-mechanism is

ex post IC as a result of Lemma 2 in CM (1985). Suppose that, in addition,
ui(0, t) = 0 for all t ∈ T. For each t−i, define

xi(t−i, 1) = −ui(q(t−i, 1), t−i, 1).

8



Feasibility follows from the assumption that ui(q(t−i, 1), t−i, 1) ≥ 0 and the obser-
vation that ui(q(t−i,σi), t−i,σi) − ui(q(t−i,σi − 1), t−i,σi) ≥ 0 for each σi. Since
the resulting E-mechanism is ex post IC, it follows that

ui(q(t−i, ti); t−i, ti) + xi(t−i, ti) ≥ ui(q(t−i, 1); t−i, ti) + xi(t−i, 1)

=

Z q(t−i,1)

0

u0i(y; t−i, ti)dy + xi(t−i, 1)

≥
Z q(t−i,1)

0

u0i(y; t−i, 1)dy + xi(t−i, 1)

= ui(q(t−i, 1); t−i, 1) + xi(t−i, 1)

= 0.

It is important to point out that the family of E-mechanisms includes ex post
IC mechanisms that are ex post IR but do not extract the full surplus (such as
the mechanism defined in the proof of Theorem 1 above) as well as ex post IC
mechanisms that extract the full surplus but are not ex post IR (such as the
surplus extracting mechanisms constructed in CM (1985) that satisfy interim IR
but not ex post IR.)
If one is interested in implementing a specific social choice rule (e.g., an ex

post efficient rule), then one must make further assumptions that guarantee that
q satisfies the monotonicity condition (ii). This can be illustrated in the special
case of a single object auction with interdependent valuations studied in CM
(1985). In this case, a single object is to be allocated to one of n bidders. If i
receives the object, his value is the nonnegative number wi(t). In this framework,
q(t) = (q1(t), .., qn(t)) where each qi(t) ≥ 0 and q1(t) + · · ·+ qn(t) ≤ 1 and

ui(q(t−i, t0i); t−i, ti) + xi(t−i, t
0
i) = qi(t−i, t

0
i)wi(t−i, ti) + xi(t−i, t

0
i).

Finally, efficiency means thatX
i∈N

qi(t)wi(t) = max
i∈N

{wi(t)}.

Theorem 2: Suppose that
(i) for each i ∈ N, t−i ∈ T−i, ti ∈ Ti\{mi}

wi(t−i, ti) ≤ wi(t−i, ti + 1)
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(ii) For all i, j ∈ N, t−i ∈ T−i, ti ∈ Ti\{mi}
wi(t−i, ti) ≥ wj(t−i, ti)⇒ wi(t−i, ti + 1) ≥ wj(t−i, ti + 1)
wi(t−i, ti) > wj(t−i, ti)⇒ wi(t−i, ti + 1) > wj(t−i, ti + 1)

Then there exists an efficient, ex post IR, ex post IC auction mechanism.

Condition (ii) in Theorem 2 guarantees that i’s probability of winning qi(t−i, ti)
is nondecreasing in i’s type ti. Other authors have employed a marginal condition
that implies (ii) when bidders’ values are drawn from an interval. Dasgupta and
Maskin (2000) and Perry and Reny (2002) (in their work on ex post efficient
auctions) and Ausubel (1999) (in his work on auction mechanisms) assume that
types are drawn from an interval and that the valuation functions are differentiable
and satisfy
(i0)

∂wi
∂ti
(t) ≥ 0

and (ii0)
∂wi
∂ti
(t) ≥ ∂wj

∂ti
(t).

These are the continuum analogues of the discrete assumptions in Theorem 2
above.
In this paper, we do not take the ui : C × T → < as the primitive objects of

study. Instead, we derive the reduced form v̂i : C × T → < from the valuation
function vi : C × Θ × Ti → R+ and the conditional distributions PΘ(·|t). In an
auction framework (such as that studied in McLean and Postlewaite (2002)),

wi(t) =
X
θ

vi(θ, ti)PΘ(θ|t).

In this special case, the second condition is quite restrictive. For example, suppose
that vi(θ, ti) = αiθ + βi for each i where αi > 0. Then

wi(t) = αi
X
θ

θPΘ(θ|t) + βi := αiθ(t) + βi.

Assuming that θ(·) is differentiable, then the second condition (ii0) is satisfied only
if

(αi − αj)
∂θ

∂ti
(t) ≥ 0
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and

(αj − αi)
∂θ

∂tj
(t) ≥ 0

for each i and j. If it is also required that ∂wi
∂ti
(t) = ∂θ

∂ti
(t) ≥ 0 and ∂wj

∂tj
(t) = ∂θ

∂tj
(t) ≥

0 with strict inequality for some t, then αi = αj. TYPO
In this paper, we do not investigate the assumptions that vi and PΘ(·|t) would

need to satisfy in order for Theorem 1 to be applicable to the reduced form v̂i.
Indeed, we believe that such assumptions are prohibitively restrictive. Instead, we
make certain assumptions regarding the distribution P ∈ ∆∗Θ×T but no assump-
tions regarding the primitive valuation function vi.

4. A Generalized Clarke-Groves-Vickrey Mechanism

Let q be a social choice rule and define transfers as follows:

αqi (t) =
X
j∈N\i

v̂j(q(t); t)−max
c∈C

X
j∈N\i

v̂j(c; t)

 if t ∈ T ∗

= 0 if t /∈ T ∗

The resulting mechanism (q,αqi ) is the generalized CGV mechanism with inter-
dependent valuations (GCGV for short.) (Ausubel(1999) and Chung and Ely
(2002) use the term generalized Vickrey mechanisms, but for a different class of
mechanisms.) If v̂i depends only on ti (as in the case when θ̃ and t̃ are stochas-
tically independent), then the GCGV mechanism reduces to the classical CGV
mechanism and it is well known that, in this case, the CGV mechanism is ex
post individually rational and satisfies strong ex post IC. It is straightforward
to show that the GCGV mechanism is ex post individually rational and feasible.
However, it will generally not even satisfy interim IC. First, we show that the
GCGV mechanism is ex post IC when P satisfies a property called nonexclusive
information.

Definition: A measure P ∈ ∆∗Θ×T satisfies nonexclusive information (NEI) if

t ∈ T ∗ ⇒ PΘ(·|t) = PΘ(·|t−i) for all i ∈ N.
Proposition A: Let {v1, .., vn} be a collection of payoff functions. If P ∈

∆∗Θ×T exhibits nonexclusive information and if q : T → C is an efficient social
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choice rule for the problem {v1, .., vn, P}, then the GCGV mechanism (q,αqi ) is ex
post IC and ex post IR.
Proof : See appendix.

Nonexclusive information is a strong assumption. Our goal in this paper is to
identify conditions under which we can modify the GCGV payments so that the
new mechanism is interim IC and approximately ex post IC. In the next section
we discuss the two main ingredients of our approximationn results: informational
size and the variability of agents’ beliefs.

5. Informational Size and Variability of Beliefs

5.1. Informational Size

If t ∈ T ∗, recall that PΘ(·|t) ∈ ∆Θ denotes the induced conditional probability
measure on Θ. A natural notion of an agent’s informational size is the degree
to which he can alter the best estimate of the state θ when other agents are
announcing truthfully. In our setup, that estimate is the conditional probability
distribution on Θ given a profile of types t. Any profile of agents’ types t =
(t−i, ti) ∈ T ∗ induces a conditional distribution on Θ and, if agent i unilaterally
changes his announced type from ti to t0i, this conditional distribution will (in
general) change. We consider agent i to be informationally small if, for each ti,
there is a “small” probability that he can induce a “large” change in the induced
conditional distribution on Θ by changing his announced type from ti to some
other t0i. This is formalized in the following definition.

Definition: Let

I iε(t
0
i, ti) = {t−i ∈ T−i|(t−i, ti) ∈ T ∗, (t−i, t0i) ∈ T ∗ and ||PΘ(·|t−i, ti)−PΘ(·|t−i, t0i)|| > ε}

The informational size of agent i is defined as

νPi = max
ti∈Ti

max
t0i∈Ti

min{ε ≥ 0| Prob{t̃−i ∈ Iiε(t0i, ti)|t̃i = ti} ≤ ε}.

Loosely speaking, we will say that agent i is informationally small with respect
to P if his informational size νPi is “small.” If agent i receives signal ti but reports
t0i 6= ti, the effect of this misreport is a change in the conditional distribution on Θ
from PΘ(·|t−i, ti) to PΘ(·|t−i, t0i). If t−i ∈ Iε(t0i, ti), then this change is “large” in the
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sense that ||PΘ(·|t̂−i, ti)−PΘ(·|t̂−i, t0i)|| > ε. Therefore, Prob{t̃−i ∈ Iε(t0i, ti)|t̃i = ti}
is the probability that i can have a “large” influence on the conditional distribution
on Θ by reporting t0i instead of ti when his observed signal is ti. An agent is
informationally small if for each of his possible types ti, he assigns small probability
to the event that he can have a “large” influence on the distribution PΘ(·|t−i, ti),
given his observed type. Informational size is closely related to the notion of
nonexclusive information studied in (Postlewaite and Schmeidler (1986)). If all
agents have zero informational size, then P must satisfy NEI. In fact, we have
the following easily demonstrated result: P ∈ ∆∗Θ×T satisfies NEI if and only if
νPi = 0 for each i ∈ N.

5.2. Variability of Agents’ Beliefs

Whether an agent i can be given incentives to reveal his information will depend
on the magnitude of the difference between PT−i(·|ti) and PT−i(·|t0i), the conditional
distributions on T−i given different types ti and t0i for agent i. To define the measure
of variability, we first define a metric d on ∆Θ as follows: for each α,β ∈ ∆Θ, let

d(α,β) =

°°°° α

||α||2 −
β

||β||2

°°°°
2

where || · ||2 denotes the 2-norm. Hence, d(α, β) measures the Euclidean distance
between the Euclidean normalizations of α and β. If P ∈ ∆Θ×T , let PΘ(·|ti) ∈ ∆Θ

be the conditional distribution on Θ given that i receives signal ti and define

ΛPi = min
ti∈Ti

min
t0i∈Ti\ti

d(PΘ(·|ti), PΘ(·|t0i))2

This is the measure of the “variability” of the conditional distribution PΘ(·|ti) as
a function of ti.
As mentioned in the introduction, our work is related to that of Cremer and

McLean (1985,1989). Those papers and subsequent work by McAfee and Reny
(1992) demonstrated how one can use correlation to fully extract the surplus in
certain mechanism design problems. The key ingredient there is the assumption
that the collection of conditional distributions {PT−i(·|ti)}ti∈Ti is a linearly inde-
pendent set for each i. This of course, implies that PT−i(·|ti) 6= PT−i(·|t0i) if ti 6= t0i
and, therefore, that ΛPi > 0. While linear independence implies that Λ

P
i > 0, the

actual (positive) size of ΛPi is not relevant in the Cremer-McLean constructions,
and full extraction will be possible. In the present work, we do not require that
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the collection {PT−i(·|ti)}ti∈Ti be linearly independent (or satisfy the weaker cone
condition in Cremer and McLean (1988)). However, the “closeness” of the mem-
bers of {PT−i(·|ti)}ti∈Ti is an important issue. It can be shown that for each i,
there exists a collection of numbers ς i(t) satisfying 0 ≤ ζi(t) ≤ 1 andX

t−i

[ς i(t−i, ti)− ς i(t−i, t0i)]PT−i(t−i|ti) > 0

for each ti, t0i ∈ Ti if and only if ΛPi > 0. This means that, if the posteriors
{PT−i(·|ti)}ti∈Ti are all distinct, then the “incentive compatibility” inequalities
above are strict. However, the expression on the left hand side decreases as ΛP →
0. Hence, the difference in the expected reward from a truthful report and from a
false report will be very small if the conditional posteriors are very close to each
other. Our results require that informational size and aggregate uncertainty be
small relative to the variation in these posteriors.

6. Implementation and Informational Size

6.1. The Results

Let {zi}i∈N be an n-tuple of functions zi : T → <+ each of which assigns to each
t ∈ T a nonnegative number, interpreted as a “reward” to agent i. If {q, xi}i∈N is a
mechanism, then the associated augmented mechanism is defined as {q, xi+zi}i∈N .

Theorem A: Let (v1, .., vn) be a collection of payoff functions.

(i) Suppose that P ∈ ∆∗Θ×T satisfies ΛPi > 0 for each i and suppose that
q : T → C is an ex post efficient social choice rule for the problem {v1, .., vn, P}.
Then there exists an augmented GCGV mechanism {q,αqi + zi}i∈N for the social
choice problem problem (v1, .., vn, P ) satisfying ex post IR and interim IC.

(ii) For every ε > 0, there exists a δ > 0 such that, whenever P ∈ ∆∗Θ×T
satisfies

max
i

νPi ≤ δmin
i

ΛPi ,

and whenever q : T → C is an ex post efficient social choice rule for the problem
{v1, .., vn, P}, there exists an augmented GCGV mechanism {q,αqi + zi}i∈N with
0 ≤ zi(t) ≤ ε for every i and t satisfying ex post IR, interim IC and ε−ex post
IC.
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6.2. Discussion

Our results rely on the following key lemma.

Lemma A: Suppose that q : T → C is an ex post efficient social choice rule
for the problem {v1, .., vn, P}. If (t−i, ti), (t−i, t0i) ∈ T ∗, then

(v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αqi (t−i, t
0
i))

≥ −2M(n− 1)||PΘ(·|t−i, ti)− PΘ(·|t−i, t0i)||

In the case of the GCGV and egalitarian mechanisms, Lemma A provides an
upper bound on the “ex post gain” to agent i when i’s true type is ti but i an-
nounces t0i and others announce truthfully. If agents have zero informationsl size -
that is, if P exhibits nonexclusive information- then ||PΘ(·|t−i, ti)−PΘ(·|t−i, t0i)|| =
0 if (t−i, ti), (t−i, t0i) ∈ T ∗. Hence, truth is an ex post Nash equilibrium and Propo-
sition A follows. If vi does not depend on θ, then (letting |Θ| = 1), we recover
the classic dominant strategy result for the CGV mechanisms in the pure private
values case.
If agent i is informationally small, then (informally) we can deduce from

Lemma A that

Pr ob{||PΘ(·|t̃−i, ti)− PΘ(·|t̃−i, t0i)|| ≈ 0|t̃i = ti} ≈ 1

so truth is an “approximate” ex post equilibrium for the CGCV in the sense that

Pr ob{(v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti))

−(v̂i(q(t−i, t0i); t−i, ti) + αqi (t−i, t
0
i)) >≈

0|t̃i = ti} ≈ 1.
Lemma A has a second important consequence: if agent i is informationally small,
then truth is an approximate Bayes-Nash equilibrium in the GCGV mechanism
so the mechanism is approximately interim incentive compatible. More precisely,
we can deduce from Lemma A that the interim expected gain from misreporting
one’s type is essentially bounded from above by one’s informational size. If we
want the mechanism to be exactly interim incentive compatible, then we must
alter the mechanism (specifically, construct an augmented GCGV mechanism) in
order to provide the correct incentives for truthful behavior. It is in this step
that variability of beliefs plays a crucial role. To see this, first note that incentive
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compatibility of the augmented GCGV requires thatX
(t−i,ti)∈T ∗

[(v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αqi (t−i, t
0
i))]P (t−i|ti)

+
X

:(t−i,ti)∈T∗
(zi(t−i, ti)− zi(t−i, t0i))P (t−i|ti)

≥ 0

The first term is bounded from below by −KνPi where K is a positive constant
independent of P . If ΛPi > 0, then there exists a collection of numbers ς i(t)
satisfying 0 ≤ ζ i(t) ≤ 1 andX

t−i

[ς i(t−i, ti)− ς i(t−i, t0i)]PT−i(t−i|ti) > 0

for each ti, t0i ∈ Ti. By defining zi(t−i, ti) = ηζ i(t−i, ti) and choosing η sufficiently
large, then we will obtain interim incentive compatibility of the augmented GCGV
mechanism. This is part (i) of Theorem A. As the informational size of an agent
decreases, the minimal reward required to induce the truth also decreases. If ΛPi
large enough relative to an agent’s informational size νPi , then we can construct
an augmented mechanism satisfying interim incentive compatibility. This is part
(ii) of Theorem A.

7. Extensions:

7.1. Lower bounded Mechanisms

In this section, we present a generalization of Theorem A based on an insight pro-
vided by Lemma A and we begin with some notation. In a typical implementation
or mechanism design problem, one computes the mechanism for each instance of
the data that defines the social choice problem. Therefore, in many if not most
cases of interest, the mechanism is parametrized by the data defining the social
choice problem. If we fix a profile (v1, .., vn) of payoff functions, then we can ana-
lyze the parametric dependence of the mechanism on the probability distribution
P and this dependence can be modelled as a mapping that associates a mecha-
nism with each P ∈ ∆∗Θ×T . We will denote this mapping P 7→ (qP , xP1 , .., x

P
n ). For

example, the mapping naturally associated with the GCGV mechanism is defined

16



by

qP (t) ∈ argmax
c∈C

X
j∈N

X
θ∈Θ

vi(c, θ, ti)P (θ|t−i, ti) if t ∈ T ∗

qP (t) = c0 if t /∈ T ∗

and

xPi (t) =
X
j∈N\i

X
θ∈Θ

vi(q
P (t), θ, ti)P (θ|t−i, ti)−max

c∈C

X
j∈N\i

X
θ∈Θ

vi(c, θ, ti)P (θ|t−i, ti)
 if t ∈ T ∗

= 0 if t /∈ T ∗

NOTE CHANGE IN DEF BELOW Rich: isn’t a mechanism neces-
sarily going to be lower bounded if we’re in the finite case?
Definition: Let (v1, .., vn) be a profile of payoff functions. For each P ∈ ∆∗Θ×T ,

let (qP , xP1 , .., x
P
n ) be a mechanism for the social choice problem (v1, .., vn, P ). We

will say that the mechanism (qP , xP1 , .., x
P
n ) is lower bounded if there exists a

K(P ) > 0 such that for all P ∈ ∆∗Θ×T ,¡
v̂i(q

P (t−i, ti); t−i, ti) + xPi (t−i, ti)
¢− ¡v̂i(qP (t−i, t0i); t−i, ti) + xPi (t−i, t0i)¢

≥ −K(P )||PΘ(·|t−i, ti)− PΘ(·|t−i, t0i)||
whenever (t−i, ti), (t−i, t0i) ∈ T ∗.We will say that the mapping P 7→ (qP , xP1 , .., x

P
n )

is lower bounded if for each P ∈ ∆∗Θ×T , the mechanism (qP , xP1 , .., x
P
n ) is lower

bounded and the constant K(P ) may be chosen independent of P .

If q is an efficient SCR, then Lemma A shows that the GCGV mechanism is
lower bounded. From the definitions, it should also be clear that any ex post IR,
lower bounded mechanism will satisfy ex post incentive compatibility if P exhibits
nonexclusive information.
NOTE CHANGE IN STATEMENT BELOW
Theorem B: Let (v1, .., vn) be a collection of payoff functions. For each P ∈

∆∗Θ×T , let (q
P , xP1 , .., x

P
n ) be an ex post IR mechanism for the SCP {v1, .., vn, P}

where qP : T → C is a social choice rule. Furthermore, suppose that P 7→
(qP , xP1 , .., x

P
n ) is lower bounded. Then for every ε > 0, there exists a δ > 0 such

that, whenever P ∈ ∆∗Θ×T satisfies

max
i

νPi ≤ δmin
i

ΛPi ,
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there exists an augmented mechanism {qP , xPi + zPi }i∈N with 0 ≤ zPi (t) ≤ ε for
every i and t satisfying ex post IR, interim IC and ε−ex post IC.

7.2. Example: Pure Common Values

The GCGVmechanism is lower bounded but a large class of lower bounded mecha-
nisms are associated with efficient social choice rules generated by payoff functions
satisfying the pure common value assumption.

Lemma C: Suppose that vi : C×Θ→ <+ and suppose that qP is an efficient
social rule for the social choice problem {v1, .., vn, P}. That is,

qP (t) ∈ argmax
c∈C

X
j∈N

X
θ∈Θ

vj(c, θ)P (θ|t−i, ti).

For each P , let

βPi (t) =
1

n

X
j∈N

X
θ∈Θ

vj(q
P (t), θ)P (θ|t)−

X
θ∈Θ

vi(q
P (t), θ)P (θ|t).

Then P 7→ (qP ,βP1 , ..,β
P
n ) is lower bounded, balanced and ex post IR.

Proof: See appendix

Theorem C: Let (v1, .., vn) be a collection of payoff functions satisfying the
pure common value assumption.

(i) Suppose that P ∈ ∆∗Θ×T satisfies ΛPi > 0 for each i and suppose that
qP : T → C is an ex post efficient social choice rule for the problem {v1, .., vn, P}.
Then there exists a mechanism {qP , xPi }i∈N for the social choice problem problem
(v1, .., vn, P ) satisfying ex post IR and interim IC.

(ii) For every ε > 0, there exists a δ > 0 such that, whenever P ∈ ∆∗Θ×T
satisfies

max
i

νPi ≤ δmin
i

ΛPi ,

and whenever qP : T → C is an efficient social choice rule for the problem
{v1, .., vn, P}, there exists a mechanism {qP , βPi + zPi }i∈N for the social choice
problem problem (v1, .., vn, P ) with 0 ≤ zPi (t) ≤ ε for every i and t satisfying ex
post IR, interim IC and ε−ex post IC. Furthermore,

0 ≤
X
i∈N

¡
βPi + z

P
i

¢
=
X
i∈N

zPi ≤ nε.
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8. Asymptotic Results

In this section, we address the problem of implementation in the presence of
many agents. In an appropriate replica framework (in particular, for conditionally
independent sequences that we define below), agents will become informationally
small as the number of agents grows. As a result, the rewards zi that induce
truthful behavior will also go to zero as the number of agents grows. It is also of
interest to determine whether or not the total reward

P
i∈N z

P
i goes to zero and

we will study that question now.

8.1. Notation and Definitions:

We will assume that all agents have the same finite signal set Ti = A. Recall that
Jr = {1, 2, ...r}. For each i ∈ Jr, let vri : C × Θ × A → <+ denote the payoff
to agent i. For any positive integer r, let T r = A × · · · × A denote the r-fold
Cartesian product and let tr = (tr1, .., t

r
r) denote a generic element of T

r.

8.2. Replica Economies and the Replica Theorem

Definition: A sequence of prob measures {P r}∞r=1 with P r ∈ ∆Θ×T r is a condi-
tionally independent sequence if there exists P ∈ ∆Θ×A such that
(a) For each r and each (θ, t1, .., tr) ∈ Θ× T r,

P r(tr1, .., t
r
r|θ) = Prob{etr1 = t1,etr2 = t2, ...,etrr = tr|θ̃ = θ} =

rY
i=1

P (ti|θ).

(b) For every θ, θ̂ with θ 6= θ̂, there exists a t ∈ A such that P (t|θ) 6= P (t|θ̂).
(c) The marginal measure of P 2 on T 2 exhibits positive variability.

Because of the symmetry in the objects defining a conditionally independent
sequence, it follows that, for fixed r, the informational size of each i ∈ Jr is the
same. In the remainder of this section we will drop the subscript i and will write
νP

r
for the value of the informational size of agents in Jr.

Lemma D: Suppose that {P r}∞r=1 is a conditionally independent sequence.
For every ε > 0 and every positive integer k, there exists an r̂ such that

rkνP
r ≤ ε
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whenever r > r̂.

The proof is provided in the appendix and is an application of a large deviations
result due to Hoeffding (1960). With this lemma, we can prove the following
asymptotic result.

NOTE CHANGE IN STATEMENT BELOW
Theorem D: Suppose that {P r}∞r=1 is a conditionally independent sequence.

Let M and ε be positive numbers. Let {(vr1, .., vrr)}r≥1 be a sequence of payoff
function profiles and for each r, let {qP r(r), xP r1 (r), .., xP rr (r)} be an ex post IR
mechanism for the SCP (vr1, .., v

r
r , P

r). Suppose that
(1) |vri (·, ·, ·)| ≤M for all r and i ∈ Jr
(2) For each r, (qP

r
(r), xP

r

1 (r), .., x
P r

r (r)) is lower bounded mechanism with
constant K(P r) and for some positive integer L, r−LK(P r)→ 0 as r →∞.
Then there exists an r̂ such that for all r > r̂, there exists an augmented mecha-

nism (qP
r
(r), xP

r

1 (r)+z
r
1, .., x

P r

r (r)+z
r
r) for the social choice problem (v

r
1, .., v

r
r , P

r)
satisfying ex post IR and interim IC. Furthermore, for each tr ∈ T r, zri (tr) ≥ 0
and

Pr
i∈Jr z

r
i (t

r) ≤ ε.

Corollary: Suppose that {P r}∞r=1 is a conditionally independent sequence.
Let M and ε be positive numbers. Let {(vr1, .., vrr)}r≥1 be a sequence of payoff
function profiles and for each r, let {qP r(r),αP r1 (r), ..,αP rr (r)} denote the GCGV
mechanism for the SCP (vr1, .., v

r
r , P

r). Suppose that |vri (·, ·, ·)| ≤ M for all r and
i ∈ Jr.
Then there exists an r̂ such that for all r > r̂, there exists an augmented

GCGVmechanism (qP
r
(r),αP

r

1 (r)+z
r
1, ..,α

P r

r (r)+z
r
r) for the social choice problem

(vr1, .., v
r
r , P

r) satisfying ex post IR and interim IC. Furthermore, for each tr ∈ T r,
zri (t

r) ≥ 0 andPr
i∈Jr z

r
i (t

r) ≤ ε.

9. Discussion

1. Note that for the asymptotic results, the asymptotic revenue is full extraction
from the highest value guy. This is because we extract all the surplus except
the payments in the augmentation, and the augmentation payments go to zero.
This plus the fact that the surplus the high value guy gets goes to zero since
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he’s getting the object at the second highest value and the difference between the
highest value and the second highest value goes to zero.

10. Proofs:

10.1. Proof of Lemma A:

First, consider the GCGV mechanism. Choose (t−i, ti), (t−i, t0i) ∈ T ∗. Then

v̂i(q(t−i, ti); t−i, ti) + αi(t−i, ti) = v̂i(q(t−i, ti); t−i, ti) +
X
j∈N\i

v̂j(q(t−i, ti); t−i, ti)

−max
c∈C

X
j∈N\i

v̂j(c; t−i, ti)


and

v̂i(q(t−i, t0i); t−i, ti) + αi(t−i, t0i) = v̂i(q(t−i, t0i); t−i, ti) +
X
j∈N\i

v̂j(q(t−i, t0i); t−i, ti)

−
X
j∈N\i

v̂j(q(t−i, t0i); t−i, ti)

+
X
j∈N\i

v̂j(q(t−i, t0i); t−i, t
0
i)−max

c∈C

X
j∈N\i

v̂j(c; t−i, t0i)


Since

v̂i(q(t−i, ti); t−i, ti)+
X
j∈N\i

v̂j(q(t−i, ti); t−i, ti) ≥ v̂i(q(t−i, t0i); t−i, ti)+
X
j∈N\i

v̂j(q(t−i, t0i); t−i, ti)

it follows that

(v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t0i))

≥ max
c∈C

X
j∈N\i

v̂j(c; t−i, t0i)

−max
c∈C

X
j∈N\i

v̂j(c; t−i, ti)


−
X
j∈N\i

v̂j(q(t−i, t0i); t−i, t
0
i) +

X
j∈N\i

v̂j(q(t−i, t0i); t−i, ti)

21



Let

q∗(t−i, ti) ∈ argmax
c∈C

X
j∈N\i

v̂j(c; t−i, ti)


and let

q∗(t−i, t0i) ∈ argmax
c∈C

X
j∈N\i

v̂j(c; t−i, t0i)

 .
Then

max
q∈C

X
j∈N\i

v̂j(q; t−i, t0i)

−max
q∈C

X
j∈N\i

v̂j(q; t−i, ti)


=

X
j∈N\i

v̂j(q
∗(t−i, t0i); t−i, t

0
i)

−
X
j∈N\i

v̂j(q
∗(t−i, ti); t−i, ti)


=

X
j∈N\i

v̂j(q
∗(t−i, t0i); t−i, t

0
i)−

X
j∈N\i

v̂j(q
∗(t−i, ti); t−i, t0i)


+

X
j∈N\i

v̂j(q
∗(t−i, ti); t−i, t0i)−

X
j∈N\i

v̂j(q
∗(t−i, ti); t−i, ti)


≥

X
j∈N\i

v̂j(q
∗(t−i, ti); t−i, t0i)−

X
j∈N\i

v̂j(q
∗(t−i, ti); t−i, ti)

Therefore,

(v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t0i))
≥

X
j∈N\i

v̂j(q
∗(t−i, ti); t−i, t0i)−

X
j∈N\i

v̂j(q
∗(t−i, ti); t−i, ti)

−
X
j∈N\i

v̂j(q(t−i, t0i); t−i, t
0
i) +

X
j∈N\i

v̂j(q(t−i, t0i); t−i, ti)

≥ −2M(n− 1)||PΘ(·|t−i, ti)− PΘ(·|t−i, t0i)||
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10.2. Proof of Theorem A:

We prove part (ii) first. Choose ε > 0. Let

M = max
θ
max
i
max
ti
max
q∈C

vi(q, θ, ti)

and let K be the cardinality of T . Choose δ so that

0 < δ <
ε

4M(n+ 1)
√
K
.

Suppose that P ∈ ∆∗Θ×T satisfies

max
i

νPi ≤ δmin
i

ΛPi .

Define ν̂P = maxi νPi and ΛP = miniΛ
P
i . Therefore ν̂

P ≤ δΛP . Since
Now we define an augmented GCGV mechanism. For each t ∈ T, define

zi(t−i, ti) = ε
PT−i(t−i|ti)
||PT−i(·|ti)||2

.

Since 0 ≤ PT−i(t−i|ti)
||PT−i(·|ti)||2

≤ 1, it follows that

0 ≤ zi(t−i, ti) ≤ ε

for all i, t−i and ti.
The augmented CGV mechanism {q,αqi + zi}i∈N is clearly ex post efficient.

Individual rationality follows from the observations that

v̂i(q(t); t) + αqi (t) ≥ 0

and
zi(t) ≥ 0.

Claim 1: Let K = |T |. ThenX
(t−i,ti)∈T ∗

(zi(t−i|ti)− zi(t−i|t0i))P (t−i|ti) ≥
ε

2
√
K
ΛPi
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Proof of Claim 1:X
(t−i,ti)∈T ∗

(zi(t−i|ti)− zi(t−i|t0i))P (t−i|ti) =
X

(t−i,ti)∈T ∗
(zi(t−i|ti)− zi(t−i|t0i))P (t−i|ti)

=
X

(t−i,ti)∈T ∗
ε

·
PT−i(t−i|ti)
||PT−i(·|ti)||2

− PT−i(t−i|t0i)
||PT−i(·|t0i)||2

¸
P (t−i|ti)

=
ε||PT−i(·|ti)||2

2

°°°° PT−i(·|ti)
||PT−i(·|ti)||2

− PT−i(·|t0i)
||PT−i(·|t0i)||2

°°°°2
≥ ε

2
√
K
ΛPi

This completes the proof of Claim 1.

Claim 2:X
(t−i,ti)∈T ∗

[(v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t0i))]P (t−i|ti) ≥ −5M ν̂P

Proof of Claim 2: Define

Ai(t
0
i, ti) = {t−i ∈ T−i| (t−i, ti) ∈ T ∗, (t−i, t0i) ∈ T ∗, ||PΘ(·|t−i, ti)−PΘ(·|t−it0i)|| > ν̂P}

and

Bi(t
0
i, ti) = {t−i ∈ T−i| (t−i, ti) ∈ T ∗, (t−i, t0i) ∈ T ∗, ||PΘ(·|t−i, ti)−PΘ(·|t−it0i)|| ≤ ν̂P}

and
Ci(t

0
i, ti) = {t−i ∈ T−i| (t−i, ti) ∈ T ∗, (t−it0i) /∈ T ∗}

Since νPi ≤ ν̂P , we conclude that

Prob{t̃−i ∈ Ai(t0i, ti)|t̃i = ti} ≤ νPi ≤ ν̂P .

In addition,

0 ≤ v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti) ≤ v̂i(q(t−i, ti); t−i, ti) ≤M
for all i, ti and t−i. Therefore,

|v̂i(q(t−i, t0i); t−i, ti) + αqi (t−i, t
0
i)| = |v̂i(q(t−i, t0i); t−i, ti)− v̂i(q(t−i, t0i); t−i, t0i)

+v̂i(q(t−i, t0i); t−i, t
0
i) + αqi (t−i, t

0
i)|

≤ |v̂i(q(t−i, t0i); t−i, ti)− v̂i(q(t−i, t0i); t−i, t0i)|
+|v̂i(q(t−i, t0i); t−i, t0i) + αqi (t−i, t

0
i)|

≤ 3M

24



for all i, ti, t0i and t−i. Applying the definitions, it follows thatX
t−i∈Ai(t0i,ti)

[(v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αqi (t−i, t
0
i))]P (t−i|ti)

≥ −3M
X

t−i∈Ai(t0i,ti)
P (t−i|ti)

≥ −3M ν̂P .

X
t−i∈Bi(t0i,ti)

[(v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αqi (t−i, t
0
i))]P (t−i|ti)

≥ −2M(n− 1)
X

t−i∈Bi(t0i,ti)
||PΘ(·|t−i, ti)− PΘ(·|t−it0i)||P (t−i|ti)

≥ −2M(n− 1)ν̂P .

and X
t−i∈Ci(t0i,ti)

[(v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αqi (t−i, t
0
i))]P (t−i|ti)

=
X

t−i∈Ci(t0i,ti)
[(v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti))− (v̂i(c0; t−i, ti) + 0)]P (t−i|ti)

=
X

t−i∈Ci(t0i,ti)
(v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti))P (t−i|ti)

≥ 0.

Combining these observations completes the proof of the claim 2.

Applying Claims 1 and 2, it follows that
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X
(t−i,ti)∈T ∗

(v̂i(q(t−i, ti); t−i, ti) + αi(t−i, ti) + zi(t−i, ti))P (t−i|ti)

−
X

(t−i,ti)∈T∗
(v̂i(q(t−i, t0i); t−i, ti) + αi(t−i, t0i) + zi(t−i, t

0
i))P (t−i|ti)

=
X

(t−i,ti)∈T ∗
[(v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αqi (t−i, t

0
i))]P (t−i|ti)

+
X

:(t−i,ti)∈T∗
(zi(t−i, ti)− zi(t−i, t0i))P (t−i|ti)

≥ ε

2
√
K
ΛPi − 2(n+ 1)M ν̂P

≥ 0.

and the proof of part (ii) is complete.
Part (i) follows from the computations in part (ii). We have shown that, for any

positive number α, there exists an augmented GCGV mechanism {q,αqi + zi}i∈N
satisfyingX

(t−i,ti)∈T ∗
[(v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αqi (t−i, t

0
i))]P (t−i|ti)

≥ α

2
√
K
ΛPi − 5M ν̂P

for each i and each ti, t0i. If Λ
P
i > 0 for each i, then α can be chosen large enough

so that incentive compatibility is satisfied. This completes the proof of part (i).

10.3. Proof of Lemma D

Let P (·|θ) denote the conditional measure on A and we assume that P (·|θ) 6=
P (·|θ̂). Let tr = (tr1, .., trr) so that Pr ob{t̃r = tr|θ̃ = θ)} = P (tr1|θ) · · ·P (trr|θ). For
each α ∈ A, let f(tr,α) = #{i ≤ r|tri = α} and define f(tr) = (f(tr,α))α∈A.
For each θ, let

ρ(θ) := max
θ̂ 6=θ

Y
α∈A

"
P (α|θ̂)
P (α|θ)

#P (α|θ)
Using the same argument found in Gul and Postlewaite (see their equation 9) we
deduce that ρ(θ) < 1 . It is easy to show (simply compute the logarithm) that
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there exists a δ > 0 such that

Y
α∈A

"
PΘ(α|θ̂)
PΘ(α|θ)

# f(tr|α)
r

−P (α|θ)

≤ 1p
ρ(θ)

whenever θ̂ 6= θ and ||f(tr)
r
− P (·|θ)|| < δ. Letting R = maxθ ρ(θ), we conclude

that ||f(tr)
r
− P (·|θ)|| < δ implies that

PΘ(θ̂|tr)
PΘ(θ|tr) =

Y
α∈A

"
PΘ(α|θ̂)
PΘ(α|θ)

#P (α|θ)Y
α∈A

"
PΘ(α|θ̂)
PΘ(α|θ)

# f(tr|α)
r

−P (α|θ)r ≤ "ρ(θ) 1p
ρ(θ)

#r
≤ Rr/2

whenever θ̂ 6= θ. This in turn implies that

||χθ − PΘ(·|tr)|| ≤ 2(m− 1)Rr/2

where χθ is the Dirac measure with χθ(θ) = 1 and |Θ| = m. To complete the
argument, choose ti, t0i ∈ A and note that for all r sufficiently large,

Pr ob{||PΘ(·|t̃r−i, ti)− PΘ(·|t̃r−i, t0i)|| > 4(m− 1)Rr/2|θ̃ = θ}
≤ Pr ob{∃α ∈ A : ||χθ − PΘ(·|t̃r−i,α)|| > 2(m− 1)Rr/2|θ̃ = θ}

≤ Pr ob{∃α ∈ A : ||f(t̃
r
−i,α)
r

− PΘ(·|θ)|| ≥ δ|θ̃ = θ}

≤ Pr ob{||f(t̃
r)

r
− PΘ(·|θ)|| ≥ δ/2|θ̃ = θ}

≤ 2 exp(
−rδ2
2
)

where the last inequality is due to Hoeffding (JASA, 1963). Hence, for all r
sufficiently large,

νPi ≤ max{4(m− 1)Rr/2,
2 exp(−rδ

2

2
)

β
}

where
β := min

α∈A
P (α).
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10.4. Proof of Theoprem D

For each t ∈ T, define

zi(t−i, ti) =
ε

r

PTi+1(ti+1|ti)
||PTi+1(·|ti)||2

if i = 1, .., r − 1

=
ε

r

PT1(t1|tr)
||PT1(·|tr)||2

if i = r

Since
0 ≤ zi(t−i, ti) ≤ ε

r

for all i, t−i and ti so individual rationality of the augmented mechanism follows
from the observations that

v̂i(q(t); t) + xi(t) ≥ 0
and

zi(t) ≥ 0.
Claim 1: Let K = |T 2|. ThenX

(t−i,ti)∈T ∗
(zi(t−i|ti)− zi(t−i|t0i))P (t−i|ti) ≥

ε

2
√
K
ΛPi

Proof of Claim 1:X
(t−i,ti)∈T r

(zi(t−i|ti)− zi(t−i|t0i))P r(t−i|ti) =
X

(t−i,ti)∈T r
(zi(t−i|ti)− zi(t−i|t0i))P r(t−i|ti)

=
X

(t−i,ti)∈T r

ε

r

·
PTi+1(ti+1|ti)
||PTi+1(·|ti)||2

− PTi+1(ti+1|t0i)
||PTi+1(·|ti)||2

¸
P (t−i|ti)

=
X

(ti+1,ti)∈T r

ε

r

·
PTi+1(ti+1|ti)
||PTi+1(·|ti)||2

− PTi+1(ti+1|t0i)
||PTi+1(·|ti)||2

¸
P (ti+1|ti)

≥ ε

2r
√
K
ΛP

2

i

This completes the proof of Claim 1.
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Claim 2:X
(t−i,ti)∈T r

[(v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t0i))]P r(t−i|ti) ≥ −5MνP
r

Proof of Claim 2: Define

Ai(t
0
i, ti) = {t−i ∈ T r−i| ||P rΘ(·|t−i, ti)− P rΘ(·|t−it0i)|| > ν̂P

r}
and

Bi(t
0
i, ti) = {t−i ∈ T r−i| ||P rΘ(·|t−i, ti)− P rΘ(·|t−it0i)|| ≤ ν̂P

r}.
We conclude that

Prob{t̃−i ∈ Ai(t0i, ti)|t̃i = ti} ≤ νP
r

.

In addition,

0 ≤ v̂ri (q(t−i, ti); t−i, ti) + xi(t−i, ti) ≤ v̂ri (q(t−i, ti); t−i, ti) ≤M
for all i, ti and t−i. Therefore,

|v̂ri (q(t−i, t0i); t−i, ti) + xi(t−i, t0i)| = |v̂ri (q(t−i, t0i); t−i, ti)− v̂ri (q(t−i, t0i); t−i, t0i)
+v̂ri (q(t−i, t

0
i); t−i, t

0
i) + xi(t−i, t

0
i)|

≤ |v̂ri (q(t−i, t0i); t−i, ti)− v̂ri (q(t−i, t0i); t−i, t0i)|
+|v̂ri (q(t−i, t0i); t−i, t0i) + xi(t−i, t0i)|

≤ 3M

for all i, ti, t0i and t−i. Applying the definitions, it follows thatX
t−i∈Ai(t0i,ti)

[(v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t0i))]P r(t−i|ti)

≥ −3M
X

t−i∈Ai(t0i,ti)
P r(t−i|ti)

≥ −3M ν̂P .X
t−i∈Bi(t0i,ti)

[(v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + xi(t−i, t0i))]P r(t−i|ti)

≥ −2MKr
X

t−i∈Bi(t0i,ti)
||P rΘ(·|t−i, ti)− P rΘ(·|t−it0i)||P r(t−i|ti)

≥ −2MKrνP
r

.
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Combining these observations completes the proof of the claim 2.

Applying Claims 1 and 2, it follows that for sufficiently large r,

X
(t−i,ti)∈T r

(v̂i(q(t−i, ti); t−i, ti) + αi(t−i, ti) + zi(t−i, ti))P r(t−i|ti)

−
X

(t−i,ti)∈T r
(v̂i(q(t−i, t0i); t−i, ti) + αi(t−i, t0i) + zi(t−i, t

0
i))P

r(t−i|ti)

=
X

(t−i,ti)∈T r
[(v̂i(q(t−i, ti); t−i, ti) + αqi (t−i, ti))− (v̂i(q(t−i, t0i); t−i, ti) + αqi (t−i, t

0
i))]P

r(t−i|ti)

+
X

:(t−i,ti)∈T r
(zi(t−i, ti)− zi(t−i, t0i))P r(t−i|ti)

≥ ε

2r
√
K
ΛP

2

i − 3MνP
r − 2MKrνP

r

=
1

r

·
ε

2
√
K
ΛP

2

i − 3MrνP
r − 2M

µ
Kr

rL

¶¡
rL+1νP

r¢¸
≥ 0.

and the proof is complete.
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